Online Tution   »   Important Question   »   Polynomial

Polynomial- Definition, Formula, Types, Function, Degree, Example

Polynomial: Definition

A polynomial is a mathematical equation made up of indeterminates (also known as variables) and coefficients and involving only addition, subtraction, multiplication, and non-negative integer exponentiation of variables. x2 4x + 7 is an example of a polynomial of a single indeterminate x. x3 + 2xyz2 yz + 1 is a three-variable example.

Polynomials can be found in a variety of fields of mathematics and science. For example, they are used to encode a wide range of problems, from simple word problems to complex scientific problems; they are used to define polynomial functions, which appear in settings ranging from basic chemistry and physics to economics and social science; and they are used to approximate other functions in calculus and numerical analysis.

 

Polynomial: Formula

A polynomial in a single indeterminate x can always be written (or rewritten) in the form

where a 0 , …, a n {\displaystyle a_{0},\ldots ,a_{n}} are constants that are called the coefficients of the polynomial, and x {\displaystyle x} is the indeterminate. The word “indeterminate” means that x {\displaystyle x} represents no particular value, although any value may be substituted for it. The mapping that associates the result of this substitution to the substituted value is a function, called a polynomial function.

This can be expressed more concisely by using summation notation:

 

That is, a polynomial can either be zero or can be written as the sum of a finite number of non-zero terms. Each term consists of the product of a number – called the coefficient of the term – and a finite number of indeterminates raised to nonnegative integer powers.

 

Polynomials: Types

Polynomials are classified according to the number of words they contain. There are polynomials with one, two, three, and even more terms. Polynomials are classed as follows based on the number of terms:

Monomials: A monomial is a polynomial expression with a single term. For instance, 4z, 6x, 2x, and 18p. Furthermore, 8x + 9x + 5x is a monomial since it is made up of like elements that add up to 22x.
Binomials: They are polynomials that have two dissimilar terms. 8x + 4×9, for example, is a binomial because it contains two dissimilar components, 83x and 4×9 and 10pq + 13p2.
Trinomials: They are polynomials that have three dissimilar terms. 2x + 9×5 – 6×3 and 22pq + 8×2 – 10 are two examples.

Also,

The degree of the polynomial is the power of the leading term or the highest power of the variable. This is accomplished by placing the polynomial terms in ascending order of power. They can be divided into four categories based on the degree of the polynomial. They are, indeed Zero polynomial, Linear polynomial, Quadratic polynomial, Cubic polynomial

Polynomial: Function

A polynomial function is one that uses only non-negative integer powers or positive integer exponents of a variable in an equation such as the quadratic equation or the cubic equation. 2x+5 is a polynomial with an exponent of one, for example.
In general, a polynomial function is often referred to as a polynomial or polynomial expression, depending on the degree of the function. The highest power found in a polynomial is its degree. In this article, you will learn about polynomial functions, including zero, one, two, and higher degree polynomials, as well as their expressions and graphical representations.

Related Post:

 

 

Polynomial: FAQs

Ques. What is a polynomial with example?
Ans. Polynomials are sums of terms of the form kxn, where k is any positive integer and n is any number. 3x+2x-5, for example, is a polynomial. Polynomials are a type of polynomial. The phrases terms, degree, standard form, monomial, binomial, and trinomial are all covered in this video.
Ques. How do you identify a polynomial?

Ans. A polynomial of the form 𝑎 + 𝑎 𝑥 + 𝑎 𝑥 + ⋯ + 𝑎 𝑥 . … .The value of the variable’s exponent is the degree of a monomial. A sum of monomials is a polynomial. The highest degree of a polynomial’s monomials is its degree.

Ques. What are polynomial terms?
Ans. Polynomial terms are the components of the equation that are usually separated by “+” or “-” signs. As a result, each term in a polynomial equation is a part of the polynomial. The number of terms in a polynomial like 8x2 + 9 +4 is 3, for example.
Ques. What is coefficient in polynomial?
Ans. The coefficient is the result of multiplying a number by a variable. The variable x is the variable, while the coefficient 12 is the coefficient.
Ques. What is meant by zero polynomial?
Ans. The constant polynomial has all of its coefficients equal to 0. The constant function with value 0 (also known as the zero map) is the analogous polynomial function. The additive identity of the additive group of polynomials is the zero polynomial.
Ques. Why is polynomial important?
Ans. Polynomials are an important aspect of mathematics and algebra’s “language.” They are used to express numbers as a result of mathematical operations in almost every branch of mathematics. Other sorts of mathematical expressions, such as rational expressions, use polynomials as “building blocks.”

Sharing is caring!

Thank You, Your details have been submitted we will get back to you.
Was this page helpful?

Leave a comment

Your email address will not be published. Required fields are marked *