Polynomial: Definition
A polynomial is a mathematical equation made up of indeterminates (also known as variables) and coefficients and involving only addition, subtraction, multiplication, and non-negative integer exponentiation of variables. x2 4x + 7 is an example of a polynomial of a single indeterminate x. x3 + 2xyz2 yz + 1 is a three-variable example.
Polynomials can be found in a variety of fields of mathematics and science. For example, they are used to encode a wide range of problems, from simple word problems to complex scientific problems; they are used to define polynomial functions, which appear in settings ranging from basic chemistry and physics to economics and social science; and they are used to approximate other functions in calculus and numerical analysis.
Polynomial: Formula
A polynomial in a single indeterminate x can always be written (or rewritten) in the form
where a 0 , …, a n {\displaystyle a_{0},\ldots ,a_{n}} are constants that are called the coefficients of the polynomial, and x {\displaystyle x} is the indeterminate. The word “indeterminate” means that x {\displaystyle x} represents no particular value, although any value may be substituted for it. The mapping that associates the result of this substitution to the substituted value is a function, called a polynomial function.
This can be expressed more concisely by using summation notation:
That is, a polynomial can either be zero or can be written as the sum of a finite number of non-zero terms. Each term consists of the product of a number – called the coefficient of the term – and a finite number of indeterminates raised to nonnegative integer powers.
Polynomials: Types
Polynomials are classified according to the number of words they contain. There are polynomials with one, two, three, and even more terms. Polynomials are classed as follows based on the number of terms:
Monomials: A monomial is a polynomial expression with a single term. For instance, 4z, 6x, 2x, and 18p. Furthermore, 8x + 9x + 5x is a monomial since it is made up of like elements that add up to 22x.
Binomials: They are polynomials that have two dissimilar terms. 8x + 4×9, for example, is a binomial because it contains two dissimilar components, 83x and 4×9 and 10pq + 13p2.
Trinomials: They are polynomials that have three dissimilar terms. 2x + 9×5 – 6×3 and 22pq + 8×2 – 10 are two examples.
Also,
The degree of the polynomial is the power of the leading term or the highest power of the variable. This is accomplished by placing the polynomial terms in ascending order of power. They can be divided into four categories based on the degree of the polynomial. They are, indeed Zero polynomial, Linear polynomial, Quadratic polynomial, Cubic polynomial
Polynomial: Function
A polynomial function is one that uses only non-negative integer powers or positive integer exponents of a variable in an equation such as the quadratic equation or the cubic equation. 2x+5 is a polynomial with an exponent of one, for example.
In general, a polynomial function is often referred to as a polynomial or polynomial expression, depending on the degree of the function. The highest power found in a polynomial is its degree. In this article, you will learn about polynomial functions, including zero, one, two, and higher degree polynomials, as well as their expressions and graphical representations.
Related Post:
- Moment Of Inertia- Definition, Formula, Factors, Example, Unit
- Magnetic Flux- Definition, Density, Formula, SI Unit
- RRB NTPC Full Form In Railways
- Kolbe Electrolysis Reaction- Definition, Mechanism
Polynomial: FAQs
Ans. A polynomial of the form ? + ? ? + ? ? + ⋯ + ? ? . … .The value of the variable’s exponent is the degree of a monomial. A sum of monomials is a polynomial. The highest degree of a polynomial’s monomials is its degree.