Acceleration is an important concept in physics and is used to define motion. Acceleration is defined as the rate of change in velocity which implies that an object is said to be accelerating when the velocity of the object is increasing or decreasing. Acceleration has both magnitude and direction which make it a vector quantity. The magnitude of the acceleration of an object is the combination of two factors net resulting force and the mass of the object, as per Newton’s Second Law of Motion. Let us understand in detail more about acceleration, its units, types, and graphs.
Acceleration is defined as the rate of change of velocity of an object concerning time. When the velocity of an object is changing, it is said to be accelerating.
Acceleration can also be defined as the rate of change in velocity and the change over time. Acceleration can be positive, negative, or zero.
The change in the velocity of an object in motion is defined as “v-u” where v is the final velocity and u is the initial velocity. Therefore, the acceleration of an object with initial velocity ‘u’ and final velocity ‘v’ and time took ‘t’ is
Acceleration = Change in Velocity /Time taken
Which gives the formula
a = (
Acceleration is a vector quantity as it has both magnitude and direction. It is denoted by a. The unit of acceleration is meters per second squared which is m/s2. The dimensional formula of acceleration is [M0 L1 T-2].
There are different types of Acceleration, namely uniform, non-uniform, average, and instantaneous, acceleration.
When the velocity of an object changes in equal amounts during the same time intervals, then the object is said to be in uniform acceleration. During uniform acceleration, the direction and the magnitude do not change with time.
Example: motion of a car with constant velocity or a ball rolling down a slope.
Non-uniform acceleration is also known as variable acceleration. In variable acceleration the velocity of the object changes by varying amounts during the same time interval. During non-uniform acceleration, the magnitude and direction both change with time.
Example: A car changes its speed after every kilometer it travels.
When the object changes its velocity for a particular specified time interval it is said to have average acceleration. The formula for calculating the average acceleration is given below.
Av =∆v/∆t or av = (vf-vi) / (tf -ti)
Here, vf is the final velocity
vi is the initial velocity
ti is the initial time
tf is the final time
Instantaneous acceleration is defined as the ratio of change in velocity during a given time interval such that the time interval goes to zero. To calculate the instantaneous acceleration, the average velocity can be calculated between two points in time separated by ∆t and ∆t approaches zero. The result obtained is the derivation of the velocity function v(t) which is the instantaneous acceleration, which when mathematically written gives
a(t) = v(t)
The curves indicate the velocity-time graph, where time is plotted along the x-axis, and velocity is plotted along the y-axis.
Criteria | Definition | Formula | Unit |
Acceleration | Acceleration is defined as the change in the velocity of an object concerning time. | Velocity / Time | m.s-2 |
Velocity | Velocity is defined as the speed of an object in a particular direction. | Displacement/Time | m.s-1 |
1.If a car accelerates from 5 m/s to 10 m/s in the 20s. Calculate its acceleration.
Ans. Given,
Initial Velocity, u = 5 m/s
Final Velocity, v = 10 m/s
Time Taken, t = 20 s
Acceleration, a= (v-u)/t
= (10m/s – 5m/s) / 20
= 0.25 m/s2
Ans. Given,
Initial Velocity, u = 90 m/s or 90 x = 25 m/s
Final Velocity, v = 72 m/s or 72 x = 20 m/s
Time Taken, t = 20 s
Acceleration, a= (v-u)/t
= (20m/s – 25m/s) / 20
= -0.25 m/s2
Given,
Initial Velocity, u = 0 m/s (car is in rest)
Time Taken, t = 10 s
Acceleration, a= 8.2 m/s2
v = u + at
= 0 + 8.2 x 10
= 82 m/s
Ans. The average acceleration over time ka is defined as the total change in velocity in given intervals of time divided by the total time taken for the change.
Ans. The acceleration due to gravity is defined as the acceleration experienced by the earth’s gravitational pull.
Ans. Centripetal Acceleration is defined as the acceleration points toward the center of the curvature since the velocity is continuously changing and acceleration is present.
Ans. Acceleration is directly proportional to the force applied to an object with constant mass.
Ans. Acceleration is a vector quantity because it is related to both magnitude and direction.
Tokyo Olympics 2021 The 2020 Summer Olympics, commonly known as Tokyo 2021 or the Games…
Union Budget 2023 The Date of Union Budget 2023 is coming near and the expectations…
JEE Main Exam Analysis JEE main exam Analysis 2023: The National Testing Agency (NTA) has…
JAC 12th Admit Card 2023 Jharkhand 12th Admit Card 2023: According to the media reports,…
CA Foundation Result Dec 2022 CA Foundation Result Dec 2022: The Institute of Chartered Accountants…
School Holidays 2023 School Holiday 2023: A day or several days off from your regular…
This website uses cookies.