arrow
arrow
arrow
Two batteries, E1\text E_1E1​​ (emf: 3 V, internal resistance: 0.5 Ω) and E2\text E_2E2​​ (emf: 6 V, internal resistance: 1.0 Ω), are connec
Question

Two batteries, E1\text E_1​ (emf: 3 V, internal resistance: 0.5 Ω) and E2\text E_2​ (emf: 6 V, internal resistance: 1.0 Ω), are connected in series by connecting the positive terminal of E2\text E_2 to the negative terminal of E1\text E_1. A third battery E3\text E_3​ (emf: 6 V, internal resistance: 1.0 Ω) is connected in parallel with this combination by connecting its positive terminal to the positive terminal of E1\text E_1 and its negative terminal to the negative terminal E2\text E_2. The equivalent emf of this combination is:

A.

7.2 V

B.

6.0 V

C.

3.6 V

D.

4.8 V

Correct option is A

Given: Two batteries in series:E1=3 V, r1=0.5 ΩE2=6 V, r2=1.0 Ω\textbf{Given:} \\\bullet\ \text{Two batteries in series:} \\E_1 = 3\,\text{V},\ r_1 = 0.5\,\Omega \\E_2 = 6\,\text{V},\ r_2 = 1.0\,\Omega \\

 Combined:Total emf in series=3 V+6 V=9 VTotal resistance=0.5+1=1.5 Ω Third battery in parallel:E3=6 V, r3=1.0 ΩStep 1: Find equivalent resistance of parallel combinationreq=r1r2r1+r2=1.5×11.5+1=1.52.5=0.6 ΩStep 2: Use the formula for equivalent emf of parallel combinationϵeq=req(ϵ1r1+ϵ2r2)Here:ϵ1=9 V, r1=1.5 Ωϵ2=6 V, r2=1.0 Ωϵeq=0.6(91.5+61)=0.6×(6+6)=0.6×12=7.2 V\bullet\ \text{Combined:} \\\text{Total emf in series} = 3\,\text{V} + 6\,\text{V} = 9\,\text{V} \\\text{Total resistance} = 0.5 + 1 = 1.5\,\Omega \\\\\bullet\ \text{Third battery in parallel:} \\E_3 = 6\,\text{V},\ r_3 = 1.0\,\Omega \\\\\\\textbf{Step 1: Find equivalent resistance of parallel combination} \\r_{eq} = \frac{r_1 r_2}{r_1 + r_2} = \frac{1.5 \times 1}{1.5 + 1} = \frac{1.5}{2.5} = 0.6\,\Omega \\\\\textbf{Step 2: Use the formula for equivalent emf of parallel combination} \\\epsilon_{eq} = r_{eq} \left( \frac{\epsilon_1}{r_1} + \frac{\epsilon_2}{r_2} \right) \\\\\text{Here:} \\\epsilon_1 = 9\,\text{V},\ r_1 = 1.5\,\Omega \\\epsilon_2 = 6\,\text{V},\ r_2 = 1.0\,\Omega \\\\\epsilon_{eq} = 0.6 \left( \frac{9}{1.5} + \frac{6}{1} \right) = 0.6 \times (6 + 6) = 0.6 \times 12 = 7.2\,\text{V}​​

Similar Questions

test-prime-package

Access ‘AAI JE ATC’ Mock Tests with

  • 60000+ Mocks and Previous Year Papers
  • Unlimited Re-Attempts
  • Personalised Report Card
  • 500% Refund on Final Selection
  • Largest Community
students-icon
346k+ students have already unlocked exclusive benefits with Test Prime!
test-prime-package

Access ‘AAI JE ATC’ Mock Tests with

  • 60000+ Mocks and Previous Year Papers
  • Unlimited Re-Attempts
  • Personalised Report Card
  • 500% Refund on Final Selection
  • Largest Community
students-icon
346k+ students have already unlocked exclusive benefits with Test Prime!
Our Plans
Monthsup-arrow