hamburger menu
All Coursesall course arrow
adda247
reward-icon
adda247
    arrow
    arrow
    arrow
    A potentiometer wire of length 100 cm has a resistance of 30 ohms. It is connected in series with a resistance of 20 ohms and an accumulator of emf 10
    Question

    A potentiometer wire of length 100 cm has a resistance of 30 ohms. It is connected in series with a resistance of 20 ohms and an accumulator of emf 10 V having negligible internal resistance. A source of 2.4 V is balanced against a length L of the potentiometer wire. What is the value of L?

    A.

    30 cm

    B.

    40 cm

    C.

    50 cm

    D.

    60 cm

    Correct option is B

    Given:Potentiometer wire length, l=100 cmResistance of potentiometer wire, R1=30 ΩResistance of series resistor, R2=20 ΩSource emf, V=10 VSource emf for balancing, Vbal=2.4 V\text{Given:} \\\text{Potentiometer wire length, } l = 100 \ \text{cm} \\\text{Resistance of potentiometer wire, } R_1 = 30 \ \Omega \\\text{Resistance of series resistor, } R_2 = 20 \ \Omega \\\text{Source emf, } V = 10 \ \text{V} \\\text{Source emf for balancing, } V_{\text{bal}} = 2.4 \ \text{V}

    The total resistance R in the circuit is the sum of R1 and R2:\text{The total resistance } R \text{ in the circuit is the sum of } R_1 \text{ and } R_2:

    R=R1+R2=30 Ω+20 Ω=50 ΩR = R_1 + R_2 = 30 \ \Omega + 20 \ \Omega = 50 \ \Omega

    The current passing through the potentiometer wire can be found using Ohm’s law:\text{The current passing through the potentiometer wire can be found using Ohm's law:}I=VR=1050=0.2 AI = \frac{V}{R} = \frac{10}{50} = 0.2 \ \text{A}

    The potential difference V across the potentiometer wire (with resistance R1=30 Ω) is:\text{The potential difference } V \text{ across the potentiometer wire (with resistance } R_1 = 30 \ \Omega) \text{ is:}V=IR1=0.2×30=6 VV = I \cdot R_1 = 0.2 \times 30 = 6 \ \text{V}

    From the potentiometer formula:ϕ=VT=6100=0.06\text{From the potentiometer formula:} \\\phi = \frac{V}{T} = \frac{6}{100} = 0.06

    Where:ϕ is the potential gradient,T is the total length of the wire (100 cm).Now, the emf of 2.4 V is balanced against the length L of the wire:2.4=ϕL\text{Where:} \\\phi \text{ is the potential gradient,} \\T \text{ is the total length of the wire (100 cm).}\text{Now, the emf of 2.4 V is balanced against the length } L \text{ of the wire:} \\2.4 = \phi \cdot LSubstitute the value of ϕ:2.4=0.06L\text{Substitute the value of } \phi: \\2.4 = 0.06 \cdot L

    Solving for L:L=2.40.06=40 cm\text{Solving for } L: \\L = \frac{2.4}{0.06} = 40 \ \text{cm}​​​​​​​​​​​

    Similar Questions

    test-prime-package

    Access ‘AAI JE ATC’ Mock Tests with

    • 60000+ Mocks and Previous Year Papers
    • Unlimited Re-Attempts
    • Personalised Report Card
    • 500% Refund on Final Selection
    • Largest Community
    students-icon
    346k+ students have already unlocked exclusive benefits with Test Prime!
    test-prime-package

    Access ‘AAI JE ATC’ Mock Tests with

    • 60000+ Mocks and Previous Year Papers
    • Unlimited Re-Attempts
    • Personalised Report Card
    • 500% Refund on Final Selection
    • Largest Community
    students-icon
    346k+ students have already unlocked exclusive benefits with Test Prime!
    Our Plans
    Monthsup-arrow