Engineering Jobs   »   Syllabus & Exam Pattern   »   BARC Syllabus Mechanical Engineering

BARC Syllabus 2022 Mechanical Engineering, Check Detailed Syllabus

BARC Syllabus 2022: Bhabha Atomic Research Centre like every year, this year has also released the official notification for the recruitment of Scientific Engineering through different engineering disciplines. The BARC Recruitment 2022 Online Application was closed on 21st February 2022. Now the slot booking procedure for the exam center preference is being conducted through online mode. To help students in their preparation for BARC Recruitment 2022 we’ve provided the detailed BARC Syllabus 2022 for Mechanical Engineering. Check the article till the end to get all the important information related to BARC Syllabus 2022.

Click Here to Download BARC Notification 2022

Now keep yourself updated with Latest Engineering Government  Jobs 24×7 Download ADDA247 App Now! CLICK HERE

BARC Syllabus 2022 Mechanical Engineering, Check Detailed Syllabus |_40.1

BARC Exam Pattern 2022

The BARC Exam Pattern is a must to be known before preparing for the examination. The right steps in right direction will lead you to Success in the examination. Check the given below BARC Exam Pattern 2022

BARC Exam Pattern 2022
Mode of Exam Online
Type of questions Multiple-choice questions (objective type)
Total no. of questions 100 questions
Duration of Exam 2 hours (120 minutes)
Marks allocated to each question 3 marks
Negative mark deducted for each wrong answer 1 mark
Total marks of the exam 300 marks
Official website @barc.gov.in

BARC Syllabus 2022: Mechanical Engineering

CLICK HERE for BARC Slot Booking 2022

The Detailed topic-wise Syllabus of Mechanical Engineering for BARC Recruitment is given below. Check the Syllabus and Align your preparations accordingly.

Engineering Mathematics

Linear Algebra: Matrix algebra, systems of linear equations, eigenvalues, and eigenvectors.

Calculus: Functions of single variable, limit, continuity and differentiability, mean value theorems, indeterminate forms; evaluation of definite and improper integrals; double and triple integrals; partial derivatives, total derivative, Taylor series (in one and two variables), maxima and minima, Fourier series; gradient, divergence and curl, vector identities, directional derivatives, line, surface and volume integrals, applications of Gauss, Stokes and Green’s theorems.

Differential equations: First order equations (linear and nonlinear); higher order linear differential equations with constant coefficients; Euler-Cauchy equation; initial and boundary value problems; Laplace transforms; solutions of heat, wave and Laplace’s equations.
Complex variables: Analytic functions; Cauchy-Riemann equations; Cauchy’s integral theorem and integral formula; Taylor and Laurent series.
Probability and Statistics: Definitions of probability, sampling theorems, conditional probability; mean, median, mode and standard deviation; random variables, binomial, Poisson and normal distributions.
Numerical Methods: Numerical solutions of linear and non-linear algebraic equations; integration by trapezoidal and Simpson’s rules; single and multi-step methods for differential equations

Applied Mechanics and Design

Engineering Mechanics: Free-body diagrams and equilibrium; friction and its applications including rolling friction, belt-pulley, brakes, clutches, screw jack, wedge, vehicles, etc.; trusses and frames; virtual work; kinematics and dynamics of rigid bodies in plane motion; impulse and momentum (linear and angular) and energy formulations; Lagrange’s equation.
Mechanics of Materials: Stress and strain, elastic constants, Poisson’s ratio; Mohr’s circle for plane stress and plane strain; thin cylinders; shear force and bending moment diagrams; bending and shear stresses; concept of shear centre; deflection of beams; torsion of circular shafts; Euler’s theory of columns; energy methods; thermal stresses; strain gauges and rosettes; testing of materials with the universal testing machine; testing of hardness and impact strength.
Theory of Machines: Displacement, velocity and acceleration analysis of plane mechanisms;
dynamic analysis of linkages; cams; gears and gear trains; flywheels and governors; balancing of
reciprocating and rotating masses; gyroscope.
Vibrations: Free and forced vibration of single degree of freedom systems, effect of damping;
vibration isolation; resonance; critical speeds of shafts.

Machine Design: Design for static and dynamic loading; failure theories; fatigue strength and the SN diagram; principles of the design of machine elements such as bolted, riveted and welded joints; shafts, gears, rolling and sliding contact bearings, brakes and clutches, springs.

Fluid Mechanics and Thermal Sciences

Fluid Mechanics: Fluid properties; fluid statics, forces on submerged bodies, stability of floating
bodies; control-volume analysis of mass, momentum and energy; fluid acceleration; differential
equations of continuity and momentum; Bernoulli’s equation; dimensional analysis; viscous flow of
incompressible fluids, boundary layer, elementary turbulent flow, flow through pipes, head losses in
pipes, bends and fittings; basics of compressible fluid flow.
Heat-Transfer: Modes of heat transfer; one dimensional heat conduction, resistance concept and electrical analogy, heat transfer through fins; unsteady heat conduction, lumped parameter system, Heisler’s charts; thermal boundary layer, dimensionless parameters in free and forced convective heat transfer, heat transfer correlations for flow over flat plates and through pipes, effect of turbulence; heat exchanger performance, LMTD and NTU methods; radiative heat transfer, StefanBoltzmann law, Wien’s displacement law, black and grey surfaces, view factors, radiation network analysis
Thermodynamics: Thermodynamic systems and processes; properties of pure substances, behavior of ideal and real gases; zeroth and first laws of thermodynamics, calculation of work and heat in various processes; second law of thermodynamics; thermodynamic property charts and tables, availability and irreversibility; thermodynamic relations.
Applications:

Power Engineering: Air and gas compressors; vapour and gas power cycles, concepts
of regeneration and reheat. I.C. Engines: Air-standard Otto, Diesel and dual cycles. Refrigeration and air-conditioning: Vapour and gas refrigeration and heat pump cycles; properties of moist air, psychrometric chart, basic psychrometric processes.

Turbomachinery: Impulse and reaction principles, velocity diagrams, Pelton-wheel, Francis and Kaplan turbines; steam and gas turbines.

Materials, Manufacturing and Industrial Engineering

Engineering Materials: Structure and properties of engineering materials, phase diagrams, heat
treatment, stress-strain diagrams for engineering materials.
Casting, Forming and Joining Processes: Different types of castings, design of patterns, moulds and cores; solidification and cooling; riser and gating design. Plastic deformation and yield criteria; fundamentals of hot and cold working processes; load estimation for bulk (forging, rolling, extrusion, drawing) and sheet (shearing, deep drawing, bending) metal forming processes; principles of powder metallurgy. Principles of welding, brazing, soldering and adhesive bonding.
Machining and Machine Tool Operations: Mechanics of machining; basic machine tools; single and multi-point cutting tools, tool geometry and materials, tool life and wear; economics of machining; principles of non-traditional machining processes; principles of work holding, jigs and fixtures; abrasive machining processes; NC/CNC machines and CNC programming.

Metrology and Inspection: Limits, fits and tolerances; linear and angular measurements;
comparators; interferometry; form and finish measurement; alignment and testing methods;
tolerance analysis in manufacturing and assembly; concepts of coordinate-measuring machine
(CMM). Computer Integrated Manufacturing: Basic concepts of CAD/CAM and their integration tools; additive manufacturing.
Production Planning and Control: Forecasting models, aggregate production planning, scheduling, materials requirement planning; lean manufacturing.
Inventory Control: Deterministic models; safety stock inventory control systems.
Operations Research: Linear programming, simplex method, transportation, assignment, network flow models, simple queuing models, PERT and CPM.

Sharing is caring!

Thank You, Your details have been submitted we will get back to you.
Was this page helpful?

Leave a comment

Your email address will not be published. Required fields are marked *