Correct option is B
Given:
asin3X+bcos3X=sinXcosX
asinX=bcosX
X is neither 0° nor 90°
Formula Used:
sin2X+cos2X=1
asinX=bcosX⟹a=bsinXcosX
Solution:
Substituting a=bsinXcosX into the first equation
asin3X+bcos3X=sinXcosX:
= bsinXcosXsin3X+bcos3X=sinXcosX
= bcosXsin2X+bcos3X=sinXcosX
⟹bcosX(sin2X+cos2X)=sinXcosX
Since sin2X+cos2X=1, So:
bcosX=sinXcosX
b=sinX
Substituting b=sinX into asinX=bcosX:
asinX=sinXcosX
So, a=cosX.
Now:
a2+b2=cos2X+sin2X=1