Correct option is AGiven: 3\sqrt{3}3 tanA = 3sinA To find: (23cosecA×tanA)(2\sqrt{3} \cosec A×\tan A)(23cosecA×tanA) Solution: 3tanA=3sinA sinA=3tanA3 ⟹ cosecA=33tanA\sqrt3\tan A = 3 \sin A \\ \ \\ \sin A = \frac{\sqrt3 \tan A}{3} \\ \ \\ \implies \cosec A = \frac{3}{\sqrt3 \tan A}3tanA=3sinA sinA=33tanA ⟹cosecA=3tanA3 Now, putting this into the expression;23cosecA×tanA =23×33tanA×tanA =62\sqrt{3} \cosec A×\tan A \\ \ \\ = 2\sqrt{3}\times \frac3{\sqrt3\tan A}×\tan A \\ \ \\ = 623cosecA×tanA =23×3tanA3×tanA =6