arrow
arrow
arrow
​What is the value of lim⁡x→12x3−1728x−12?\lim _{x \rightarrow 12} \frac{x^3-1728}{x-12} ?x→12lim​x−12x3−1728​?​​
Question

What is the value of limx12x31728x12?\lim _{x \rightarrow 12} \frac{x^3-1728}{x-12} ?

A.

0

B.

3

C.

144

D.

432

Correct option is D

We are asked to evaluate the limit:limx12x31728x12Note that 1728=123, so the expression becomes:x3123x12Use the identity:a3b3=(ab)(a2+ab+b2)Applying it here:x3123=(x12)(x2+12x+144)So,x3123x12=(x12)(x2+12x+144)x12Cancel the common factor (x12), and you’re left with:x2+12x+144Now take the limit as x12:122+1212+144=144+144+144=432\begin{aligned}&\text{We are asked to evaluate the limit:} \\&\lim_{x \to 12} \frac{x^3 - 1728}{x - 12} \\[10pt]&\text{Note that } 1728 = 12^3, \text{ so the expression becomes:} \\&\frac{x^3 - 12^3}{x - 12} \\[10pt]&\text{Use the identity:} \quad a^3 - b^3 = (a - b)(a^2 + ab + b^2) \\[10pt]&\text{Applying it here:} \quad x^3 - 12^3 = (x - 12)(x^2 + 12x + 144) \\[10pt]&\text{So,} \\&\frac{x^3 - 12^3}{x - 12} = \frac{(x - 12)(x^2 + 12x + 144)}{x - 12} \\[10pt]&\text{Cancel the common factor } (x - 12), \text{ and you're left with:} \\&x^2 + 12x + 144 \\[10pt]&\text{Now take the limit as } x \to 12: \\&12^2 + 12 \cdot 12 + 144 = 144 + 144 + 144 = 432 \\[10pt]\end{aligned}​​

test-prime-package

Access ‘AAI JE ATC’ Mock Tests with

  • 60000+ Mocks and Previous Year Papers
  • Unlimited Re-Attempts
  • Personalised Report Card
  • 500% Refund on Final Selection
  • Largest Community
students-icon
175k+ students have already unlocked exclusive benefits with Test Prime!
test-prime-package

Access ‘AAI JE ATC’ Mock Tests with

  • 60000+ Mocks and Previous Year Papers
  • Unlimited Re-Attempts
  • Personalised Report Card
  • 500% Refund on Final Selection
  • Largest Community
students-icon
175k+ students have already unlocked exclusive benefits with Test Prime!