Correct option is D
We are asked to evaluate the limit:x→12limx−12x3−1728Note that 1728=123, so the expression becomes:x−12x3−123Use the identity:a3−b3=(a−b)(a2+ab+b2)Applying it here:x3−123=(x−12)(x2+12x+144)So,x−12x3−123=x−12(x−12)(x2+12x+144)Cancel the common factor (x−12), and you’re left with:x2+12x+144Now take the limit as x→12:122+12⋅12+144=144+144+144=432