arrow
arrow
arrow
​ Find lim⁡x→π4cot⁡3x−tan⁡xcos⁡(x+π4).\text { Find } \lim _{x \rightarrow \frac{\pi}{4}} \frac{\cot ^3 x-\tan x}{\cos \left(x+\frac{\pi}{4}\
Question

 Find limxπ4cot3xtanxcos(x+π4).\text { Find } \lim _{x \rightarrow \frac{\pi}{4}} \frac{\cot ^3 x-\tan x}{\cos \left(x+\frac{\pi}{4}\right)}.​​

A.

2\sqrt2​​

B.

8

C.

424\sqrt2​​

D.

4

Correct option is B

At x=π4, we have:cotx=tan1x=1=>cot3x=1tanx=1cos(x+π4)=cos(π2)=0So, the limit becomes 00, which is indeterminate. Apply L’Hoˆpital’s Rule:Differentiate numerator:ddx(cot3xtanx)=ddx(cot3x)ddx(tanx)=3cot2x(csc2x)sec2x=3cot2xcsc2xsec2xDifferentiate denominator:ddx[cos(x+π4)]=sin(x+π4)Now evaluate at x=π4:cotx=1=>cot2x=1cscx=1sinx=2=>csc2x=2secx=1cosx=2=>sec2x=2sin(π2)=1So the expression becomes:limxπ43(1)(2)21=621=81=8\begin{aligned}&\text{At } x = \frac{\pi}{4}, \text{ we have:} \\&\quad \cot x = \tan^{-1} x = 1 \Rightarrow \cot^3 x = 1 \\&\quad \tan x = 1 \\&\quad \cos\left(x + \frac{\pi}{4} \right) = \cos\left(\frac{\pi}{2} \right) = 0 \\[10pt]&\text{So, the limit becomes } \frac{0}{0}, \text{ which is indeterminate. Apply L'Hôpital's Rule:} \\&\text{Differentiate numerator:} \\&\frac{d}{dx}(\cot^3 x - \tan x) = \frac{d}{dx}(\cot^3 x) - \frac{d}{dx}(\tan x) \\&= 3 \cot^2 x \cdot (-\csc^2 x) - \sec^2 x = -3 \cot^2 x \csc^2 x - \sec^2 x \\[10pt]&\text{Differentiate denominator:} \\&\frac{d}{dx} \left[\cos\left(x + \frac{\pi}{4} \right)\right] = -\sin\left(x + \frac{\pi}{4} \right) \\[10pt]&\text{Now evaluate at } x = \frac{\pi}{4}: \\&\quad \cot x = 1 \Rightarrow \cot^2 x = 1 \\&\quad \csc x = \frac{1}{\sin x} = \sqrt{2} \Rightarrow \csc^2 x = 2 \\&\quad \sec x = \frac{1}{\cos x} = \sqrt{2} \Rightarrow \sec^2 x = 2 \\&\quad \sin\left(\frac{\pi}{2} \right) = 1 \\[10pt]&\text{So the expression becomes:} \\&\lim_{x \to \frac{\pi}{4}} \frac{-3(1)(2) - 2}{-1} = \frac{-6 - 2}{-1} = \frac{-8}{-1} = {8}\end{aligned}​​

test-prime-package

Access ‘AAI JE ATC’ Mock Tests with

  • 60000+ Mocks and Previous Year Papers
  • Unlimited Re-Attempts
  • Personalised Report Card
  • 500% Refund on Final Selection
  • Largest Community
students-icon
175k+ students have already unlocked exclusive benefits with Test Prime!
test-prime-package

Access ‘AAI JE ATC’ Mock Tests with

  • 60000+ Mocks and Previous Year Papers
  • Unlimited Re-Attempts
  • Personalised Report Card
  • 500% Refund on Final Selection
  • Largest Community
students-icon
175k+ students have already unlocked exclusive benefits with Test Prime!