arrow
arrow
arrow
lim⁡n→∞1+2+3+…+nn2\lim _{n \rightarrow \infty} \frac{1+2+3+\ldots+n}{n^2}n→∞lim​n21+2+3+…+n​​ is equivalent to
Question

limn1+2+3++nn2\lim _{n \rightarrow \infty} \frac{1+2+3+\ldots+n}{n^2}​ is equivalent to

A.

0

B.


C.

1

D.

12\frac{1}{2}​​

Correct option is D

Sum of First  n  Natural Numbers1+2+3++n=n(n+1)2Rewrite the Limitlimn1+2++nn2=limnn(n+1)2n2=limnn(n+1)2n2Simplify the Expressionlimnn2(1+1n)2n2=limn1+1n2Evaluate the LimitAs n,1n0, therefore:1+02=12\begin{aligned}&\text{\textbf{Sum of First } n \text{ Natural Numbers}} \\&\quad 1 + 2 + 3 + \cdots + n = \frac{n(n+1)}{2} \\[10pt]&\text{\textbf{Rewrite the Limit}} \\&\quad \lim_{n \to \infty} \frac{1 + 2 + \cdots + n}{n^2} = \lim_{n \to \infty} \frac{\frac{n(n+1)}{2}}{n^2} = \lim_{n \to \infty} \frac{n(n+1)}{2n^2} \\[10pt]&\text{\textbf{Simplify the Expression}} \\&\quad \lim_{n \to \infty} \frac{n^2\left(1 + \frac{1}{n}\right)}{2n^2} = \lim_{n \to \infty} \frac{1 + \frac{1}{n}}{2} \\[10pt]&\text{\textbf{Evaluate the Limit}} \\&\quad \text{As } n \to \infty, \frac{1}{n} \to 0 \text{, therefore:} \\&\quad \frac{1 + 0}{2} = \boxed{\frac{1}{2}}\end{aligned}​​

test-prime-package

Access ‘AAI JE ATC’ Mock Tests with

  • 60000+ Mocks and Previous Year Papers
  • Unlimited Re-Attempts
  • Personalised Report Card
  • 500% Refund on Final Selection
  • Largest Community
students-icon
175k+ students have already unlocked exclusive benefits with Test Prime!
test-prime-package

Access ‘AAI JE ATC’ Mock Tests with

  • 60000+ Mocks and Previous Year Papers
  • Unlimited Re-Attempts
  • Personalised Report Card
  • 500% Refund on Final Selection
  • Largest Community
students-icon
175k+ students have already unlocked exclusive benefits with Test Prime!