arrow
arrow
arrow
What is the square root of z = 7 - 24i?
Question

What is the square root of z = 7 - 24i?

A.

±(4 + 3i)

B.

±(4i + 3)

C.

±(4i - 3)

D.

±(4 - 3i)

Correct option is D

Let z=724i. We are looking for z=a+bi, such that:(a+bi)2=724iExpanding the left-hand side:(a+bi)2=a2+2abi+(bi)2=a2b2+2abiEquating real and imaginary parts:a2b2=7(1)2ab=24(2)From equation (2):ab=12=>b=12aSubstitute into equation (1):a2(12a)2=7=>a2144a2=7Multiply both sides by a2:a4144=7a2=>a47a2144=0Let u=a2, then:u27u144=0Solve using the quadratic formula:u=7±49+5762=7±6252=7±252u=16 or 9=>a2=16=>a=±4Using ab=12:If a=4, then b=124=3If a=4, then b=124=3Thus, the square roots of 724i are:±(43i)\begin{aligned}&\text{Let } z = 7 - 24i. \text{ We are looking for } \sqrt{z} = a + bi, \text{ such that:} \\&(a + bi)^2 = 7 - 24i \\[5pt]&\text{Expanding the left-hand side:} \\&(a + bi)^2 = a^2 + 2abi + (bi)^2 = a^2 - b^2 + 2abi \\[5pt]&\text{Equating real and imaginary parts:} \\&a^2 - b^2 = 7 \quad \text{(1)} \\&2ab = -24 \quad \text{(2)} \\[5pt]&\text{From equation (2):} \\&ab = -12 \Rightarrow b = \frac{-12}{a} \\[5pt]&\text{Substitute into equation (1):} \\&a^2 - \left( \frac{-12}{a} \right)^2 = 7 \Rightarrow a^2 - \frac{144}{a^2} = 7 \\[5pt]&\text{Multiply both sides by } a^2: \\&a^4 - 144 = 7a^2 \Rightarrow a^4 - 7a^2 - 144 = 0 \\[5pt]&\text{Let } u = a^2, \text{ then:} \\&u^2 - 7u - 144 = 0 \\[5pt]&\text{Solve using the quadratic formula:} \\&u = \frac{7 \pm \sqrt{49 + 576}}{2} = \frac{7 \pm \sqrt{625}}{2} = \frac{7 \pm 25}{2} \\[5pt]&u = 16 \text{ or } -9 \Rightarrow a^2 = 16 \Rightarrow a = \pm 4 \\[5pt]&\text{Using } ab = -12: \\&\text{If } a = 4, \text{ then } b = \frac{-12}{4} = -3 \\&\text{If } a = -4, \text{ then } b = \frac{-12}{-4} = 3 \\[5pt]&\text{Thus, the square roots of } 7 - 24i \text{ are:} \\&\boxed{\pm (4 - 3i)}\end{aligned}​​

test-prime-package

Access ‘AAI JE ATC’ Mock Tests with

  • 60000+ Mocks and Previous Year Papers
  • Unlimited Re-Attempts
  • Personalised Report Card
  • 500% Refund on Final Selection
  • Largest Community
students-icon
175k+ students have already unlocked exclusive benefits with Test Prime!
test-prime-package

Access ‘AAI JE ATC’ Mock Tests with

  • 60000+ Mocks and Previous Year Papers
  • Unlimited Re-Attempts
  • Personalised Report Card
  • 500% Refund on Final Selection
  • Largest Community
students-icon
175k+ students have already unlocked exclusive benefits with Test Prime!