arrow
arrow
arrow
Which of the following represents the solution of the given system of linear equations?3x + y + 5z = 30 2x + 2y + 3z = 40 x + y + 2z = 20
Question

Which of the following represents the solution of the given system of linear equations?

3x + y + 5z = 30

2x + 2y + 3z = 40

x + y + 2z = 20

A.

x = 0, y = 10, z = 5

B.

x = 5, y = 15, z = 0

C.

x = 5, y = 0, z = 15

D.

x = 10, y = 5, z = 5

Correct option is B

From Equation (3):x=20y2z(4)Substitute Equation (4) into (1) and (2)Substituting into Equation (1):3(20y2z)+y+5z=30603y6z+y+5z=30602yz=30=>2y+z=30(5)Substituting into Equation (2):2(20y2z)+2y+3z=40402y4z+2y+3z=4040z=40=>z=0(6)Substitute z=0 into Equation (5)2y+0=30=>y=15Substitute y=15, z=0 into Equation (4) to find xx=20152(0)=5\begin{aligned}&\text{From Equation (3):} \\&\quad x = 20 - y - 2z \quad \text{(4)} \\[10pt]&\text{Substitute Equation (4) into (1) and (2)} \\[5pt]&\text{Substituting into Equation (1):} \\&\quad 3(20 - y - 2z) + y + 5z = 30 \\&\quad 60 - 3y - 6z + y + 5z = 30 \\&\quad 60 - 2y - z = 30 \Rightarrow 2y + z = 30 \quad \text{(5)} \\[10pt]&\text{Substituting into Equation (2):} \\&\quad 2(20 - y - 2z) + 2y + 3z = 40 \\&\quad 40 - 2y - 4z + 2y + 3z = 40 \\&\quad 40 - z = 40 \Rightarrow z = 0 \quad \text{(6)} \\[10pt]&\text{Substitute } z = 0 \text{ into Equation (5)} \\&\quad 2y + 0 = 30 \Rightarrow y = 15 \\[10pt]&\text{Substitute } y = 15,\, z = 0 \text{ into Equation (4) to find } x \\&\quad x = 20 - 15 - 2(0) = 5\end{aligned}​​

test-prime-package

Access ‘AAI JE ATC’ Mock Tests with

  • 60000+ Mocks and Previous Year Papers
  • Unlimited Re-Attempts
  • Personalised Report Card
  • 500% Refund on Final Selection
  • Largest Community
students-icon
175k+ students have already unlocked exclusive benefits with Test Prime!
test-prime-package

Access ‘AAI JE ATC’ Mock Tests with

  • 60000+ Mocks and Previous Year Papers
  • Unlimited Re-Attempts
  • Personalised Report Card
  • 500% Refund on Final Selection
  • Largest Community
students-icon
175k+ students have already unlocked exclusive benefits with Test Prime!