Correct option is B
Identify SingularitiesThe integrand f(z)=z(2z+1)3z+1 has singularities at:1.z=02.2z+1=0⟹z=−21Both lie inside the contour C (unit circle) since ∣0∣=0<1 and ∣−21∣=21<1.Compute ResiduesResidue at z=0:Res(f,0)=z→0limz⋅z(2z+1)3z+1=z→0lim2z+13z+1=1Residue at z=−21:Res(f,−21)=z→−21lim(z+21)⋅z(2z+1)3z+1Note: 2z+1=2(z+21)=z→−21lim2z3z+1=−1−23+1=−1−21=21Apply Cauchy’s Residue Theorem∮Cz(2z+1)3z+1dz=2πi(Res(f,0)+Res(f,−21))=2πi(1+21)=3πi