Evaluate the given expression.∫81−(logx)2xdx\int \frac{\sqrt{81-(\log x)^2}}{x} d x∫x81−(logx)2dx
Question
Evaluate the given expression.
∫x81−(logx)2dx
A.
2x81−(logx)2+281sin−1(9x)+C
B.
2x81−(x)2+281sin−1(9x)+C
C.
2logx81−(logx)2+281sin−1(9logx)+C
D.
2logx81−(x)2+29sin−1(9logx)+C
Correct option is C
Let logx=t=>dxd(logx)=x1=>dx=xdt.Then the given integral becomes:∫x81−(logx)2dx=∫81−t2dtWe use the standard formula:∫a2−t2dt=2ta2−t2+2a2sin−1(at)+CHere a=9, so we get:∫81−t2dt=2t81−t2+281sin−1(9t)+CSubstitute back t=logx,we get the final answer:2logx81−(logx)2+281sin−1(9logx)+C