arrow
arrow
arrow
Evaluate the given expression.∫81−(log⁡x)2xdx\int \frac{\sqrt{81-(\log x)^2}}{x} d x∫x81−(logx)2​​dx​​
Question

Evaluate the given expression.

81(logx)2xdx\int \frac{\sqrt{81-(\log x)^2}}{x} d x​​

A.

x281(logx)2+812sin1(x9)+C\frac{x}{2} \sqrt{81-(\log x)^2}+\frac{81}{2} \sin ^{-1}\left(\frac{x}{9}\right)+C​​

B.

x281(x)2+812sin1(x9)+C\frac{x}{2} \sqrt{81-(x)^2}+\frac{81}{2} \sin ^{-1}\left(\frac{x}{9}\right)+C​​

C.

logx281(logx)2+812sin1(logx9)+C\frac{\log x}{2} \sqrt{81-(\log x)^2}+\frac{81}{2} \sin ^{-1}\left(\frac{\log x}{9}\right)+C​​

D.

logx281(x)2+92sin1(logx9)+C\frac{\log x}{2} \sqrt{81-(x)^2}+\frac{9}{2} \sin ^{-1}\left(\frac{\log x}{9}\right)+C​​

Correct option is C

Let logx=t=>ddx(logx)=1x=>dx=x dt.Then the given integral becomes:81(logx)2x dx=81t2 dtWe use the standard formula:a2t2 dt=t2a2t2+a22sin1(ta)+CHere a=9, so we get:81t2 dt=t281t2+812sin1(t9)+CSubstitute back t=logx, we get the final answer:logx281(logx)2+812sin1(logx9)+C\begin{aligned}&\text{Let } \log x = t \Rightarrow \frac{d}{dx}(\log x) = \frac{1}{x} \Rightarrow dx = x \, dt. \\[6pt]&\text{Then the given integral becomes:} \\&\int \frac{\sqrt{81 - (\log x)^2}}{x} \, dx = \int \sqrt{81 - t^2} \, dt \\[10pt]&\text{We use the standard formula:} \\&\int \sqrt{a^2 - t^2} \, dt = \frac{t}{2} \sqrt{a^2 - t^2} + \frac{a^2}{2} \sin^{-1} \left( \frac{t}{a} \right) + C \\[10pt]&\text{Here } a = 9, \text{ so we get:} \\&\int \sqrt{81 - t^2} \, dt = \frac{t}{2} \sqrt{81 - t^2} + \frac{81}{2} \sin^{-1} \left( \frac{t}{9} \right) + C \\[10pt]&\text{Substitute back } t = \log x,\ \text{we get the final answer:} \\[6pt]&{\frac{\log x}{2} \sqrt{81 - (\log x)^2} + \frac{81}{2} \sin^{-1} \left( \frac{\log x}{9} \right) + C}\end{aligned}​​

test-prime-package

Access ‘AAI JE ATC’ Mock Tests with

  • 60000+ Mocks and Previous Year Papers
  • Unlimited Re-Attempts
  • Personalised Report Card
  • 500% Refund on Final Selection
  • Largest Community
students-icon
176k+ students have already unlocked exclusive benefits with Test Prime!
test-prime-package

Access ‘AAI JE ATC’ Mock Tests with

  • 60000+ Mocks and Previous Year Papers
  • Unlimited Re-Attempts
  • Personalised Report Card
  • 500% Refund on Final Selection
  • Largest Community
students-icon
176k+ students have already unlocked exclusive benefits with Test Prime!