hamburger menu
All Coursesall course arrow
adda247
reward-icon
adda247
    arrow
    arrow
    arrow
    What is the area of the region bounded by the curve y = 32−x2\sqrt{32-\text{x}^2}32−x2​​ and x-axis in the first quadrant?
    Question

    What is the area of the region bounded by the curve y = 32x2\sqrt{32-\text{x}^2}​ and x-axis in the first quadrant?

    A.

    32π sq units

    B.

    4π sq units

    C.

    8π sq units

    D.

    424\sqrt2​ π sq units

    Correct option is C

    Use trigonometric substitution:Let x=42sinθ=>dx=42cosθ dθWhen x=0, θ=0,and when x=32=42, θ=π2Now substitute into the integral:03232x2 dx=0π/232(42sinθ)242cosθ dθ=0π/232(1sin2θ)42cosθ dθ=0π/232cos2θ42cosθ dθ=0π/232cosθ42cosθ dθ=42320π/2cos2θ dθ=320π/2cos2θ dθUse the identity cos2θ=1+cos(2θ)2:320π/21+cos(2θ)2 dθ=160π/2(1+cos(2θ)) dθ=16[θ+sin(2θ)2]0π/2=16[π2+0(0+0)]=16π2=8π\begin{aligned}&\text{Use trigonometric substitution:} \\&\text{Let } x = 4\sqrt{2} \sin \theta \Rightarrow dx = 4\sqrt{2} \cos \theta \, d\theta \\&\text{When } x = 0, \, \theta = 0, \quad \text{and when } x = \sqrt{32} = 4\sqrt{2}, \, \theta = \frac{\pi}{2} \\[10pt]&\text{Now substitute into the integral:} \\&\int_{0}^{\sqrt{32}} \sqrt{32 - x^2} \, dx = \int_{0}^{\pi/2} \sqrt{32 - (4\sqrt{2} \sin\theta)^2} \cdot 4\sqrt{2} \cos\theta \, d\theta \\&= \int_{0}^{\pi/2} \sqrt{32(1 - \sin^2\theta)} \cdot 4\sqrt{2} \cos\theta \, d\theta = \int_{0}^{\pi/2} \sqrt{32\cos^2\theta} \cdot 4\sqrt{2} \cos\theta \, d\theta \\&= \int_{0}^{\pi/2} \sqrt{32} \cos\theta \cdot 4\sqrt{2} \cos\theta \, d\theta = 4\sqrt{2} \cdot \sqrt{32} \int_{0}^{\pi/2} \cos^2\theta \, d\theta = 32 \int_{0}^{\pi/2} \cos^2\theta \, d\theta \\[10pt]&\text{Use the identity } \cos^2\theta = \frac{1 + \cos(2\theta)}{2}: \\&32 \int_{0}^{\pi/2} \frac{1 + \cos(2\theta)}{2} \, d\theta = 16 \int_{0}^{\pi/2} (1 + \cos(2\theta)) \, d\theta = 16 \left[ \theta + \frac{\sin(2\theta)}{2} \right]_{0}^{\pi/2} \\&= 16 \left[ \frac{\pi}{2} + 0 - (0 + 0) \right] = 16 \cdot \frac{\pi}{2} = {8\pi}\end{aligned}​​

    test-prime-package

    Access ‘AAI JE ATC’ Mock Tests with

    • 60000+ Mocks and Previous Year Papers
    • Unlimited Re-Attempts
    • Personalised Report Card
    • 500% Refund on Final Selection
    • Largest Community
    students-icon
    175k+ students have already unlocked exclusive benefits with Test Prime!
    test-prime-package

    Access ‘AAI JE ATC’ Mock Tests with

    • 60000+ Mocks and Previous Year Papers
    • Unlimited Re-Attempts
    • Personalised Report Card
    • 500% Refund on Final Selection
    • Largest Community
    students-icon
    175k+ students have already unlocked exclusive benefits with Test Prime!