Correct option is CGiven: sin210∘+sin220∘+sin230∘+sin240∘+sin250∘+sin260∘+sin270∘+sin280∘+sin290∘cos220∘+cos240∘+cos250∘+cos270∘+cos245∘\frac{\sin^2{10^\circ} + \sin^2{20^\circ} + \sin^2{30^\circ} + \sin^2{40^\circ} + \sin^2{50^\circ} + \sin^2{60^\circ} + \sin^2{70^\circ} + \sin^2{80^\circ} + \sin^2{90^\circ}}{\cos^2{20^\circ} + \cos^2{40^\circ} + \cos^2{50^\circ} + \cos^2{70^\circ} + \cos^2{45^\circ}}cos220∘+cos240∘+cos250∘+cos270∘+cos245∘sin210∘+sin220∘+sin230∘+sin240∘+sin250∘+sin260∘+sin270∘+sin280∘+sin290∘Identity Used:sin2θ+sin2(90∘−θ)=1\sin^2{\theta} + \sin^2{(90^\circ - \theta)} = 1sin2θ+sin2(90∘−θ)=1 :cos2θ+cos2(90∘−θ)=1: \cos^2{\theta} + \cos^2{(90^\circ - \theta)} = 1:cos2θ+cos2(90∘−θ)=1Solution: