If 3 cotA = 2, then find the value of 3(cosec2A−1)(sec2A−1).\sqrt{\frac{3(\cosec^2 A - 1)}{(\sec^2 A - 1)}}.(sec2A−1)3(cosec2A−1).
Find the value of sin268∘+sin222∘2(cos217∘+cos273∘)\frac{\sin^2{68^\circ} + \sin^2{22^\circ}}{2 \left( \cos^2{17^\circ} + \cos^2{73^\circ} \right)}2(cos217∘+cos273∘)sin268∘+sin222∘.
If sin4θ−cos4θ=12\sin^4 \theta - \cos^4 \theta = \frac{1}{2}sin4θ−cos4θ=21, find the value of 2sin2θ−12 \sin^2 \theta - 12sin2θ−1.
The value of (sec∅ − tan∅)² (1 + sin∅)² ÷ cos²∅ is