Correct option is C
Given:
cosecθ+1cotθ+cotθcosecθ+1
Formula Used:
1+cot2θ=cosec2θ
Solution:
cosecθ+1cotθ+cotθcosecθ+1 =(cosecθ+1)⋅cotθcot2θ+(cosecθ+1)2 =(cosecθ+1)⋅cotθcot2θ+cosec2θ+1+2cosecθ =(cosecθ+1)⋅cotθcosec2θ+cot2θ+2cosecθ+1 =cotθ(cosecθ+1)2cosecθ(cosecθ+1) =cotθ2cosecθ =2×sinθ1×cosθsinθ=2secθ