Correct option is CGiven: m = a cos³β n = b sin³β Formula Used: sin2β + cos2β = 1 Solution: m=acos3β ⟹ cosβ=(ma)13 n=bsin3β ⟹ sinβ=(nb)13m = a \cos³β \implies \cosβ = \left(\frac ma \right)^{\frac{1}{3}} \\ \ \\ n = b \sin³β \implies \sinβ = \left(\frac nb \right)^{\frac{1}{3}}m=acos3β⟹cosβ=(am)31 n=bsin3β⟹sinβ=(bn)31 Now, sin2β+cos2β=1 [(ma)13]2+[(nb)13]2=1 (ma)23+(nb)23=1\sin^2β + \cos^2β = 1 \\ \ \\ \left[\left(\frac ma \right)^{\frac13} \right]^2 +\left[\left(\frac nb \right)^{\frac13} \right]^2 = 1 \\ \ \\ \left(\frac ma \right)^{\frac23} +\left(\frac nb \right)^{\frac23} = 1 sin2β+cos2β=1 [(am)31]2+[(bn)31]2=1 (am)32+(bn)32=1