Correct option is BGiven:cosec4θ=49+cot4θcosec^4θ=49+cot^4θcosec4θ=49+cot4θFormula Used:1 + cot2θ=coseec2θcot^2\theta = coseec^2\thetacot2θ=coseec2θSolution:cosec4θ=49+cot4θ cosec4θ−cot4θ=49 (cosec2θ−cot2θ)(cosec2θ+cot2θ)=49 1×(cosec2θ+cosec2θ−1)=49 2cosec2θ=49+1 cosec2θ=502 cosec2θ=25 1sin2θ=25 sinθ=15cosec^4θ=49+cot^4θ \\ \ \\cosec^4θ -cot^4θ=49 \\ \ \\(cosec^2θ -cot^2θ)(cosec^2θ +cot^2θ) =49 \\ \ \\1\times(cosec^2θ+cosec^2θ -1) =49 \\ \ \\2 cosec^2θ= 49 +1 \\ \ \\cosec^2θ = \frac {50}2 \\ \ \\cosec^2θ =25 \\ \ \\\frac {1}{sin^2θ}=25 \\ \ \\sin θ =\frac 15cosec4θ=49+cot4θ cosec4θ−cot4θ=49 (cosec2θ−cot2θ)(cosec2θ+cot2θ)=49 1×(cosec2θ+cosec2θ−1)=49 2cosec2θ=49+1 cosec2θ=250 cosec2θ=25 sin2θ1=25 sinθ=51