Correct option is A
Given:
sin78° + cos132°
Formula Used:
cosθ=sin(90∘−θ)=sinθ
sinA−sinB=2cos(2A+B)sin(2A−B)
Solution:
sin78∘+cos132∘
=sin78∘+sin(90∘−132∘)
=sin78∘+sin(−42∘)
= sin78∘−sin42∘
Using the identity:
sinA−sinB=2cos(2A+B)sin(2A−B)
A=78∘B=42∘ and,
= 2cos(278∘+42∘)sin(278∘−42∘)
= 2cos(60∘)sin(18∘)
Since cos60∘=21
=2×21×sin18∘
=sin18∘
Thus, the correct answer is (a).