arrow
arrow
arrow
What is wrong with the following calculation?​∫−131x2dx=−43\int_{-1}^3 \frac{1}{x^2} d x=-\frac{4}{3}∫−13​x21​dx=−34​​​
Question

What is wrong with the following calculation?

131x2dx=43\int_{-1}^3 \frac{1}{x^2} d x=-\frac{4}{3}​​

A.

f(x)=1x2<0f(x)=\frac{1}{x^2}<0​​

B.

The value of the integral does not exist, since f(x)=1x2f(x)=\frac{1}{x^2} has an infinite discontinuity at xx​ = 0

C.

Fundamental Theorem of Calculus applies to discontinuous functions.

D.

f(x)=1x2f(x)=\frac{1}{x^2}​ is continuous function on [-1, 3]

Correct option is B

For improper integrals with discontinuities, we must split the integral at the point of discontinuity and take limits:131x2 dx=101x2 dx+031x2 dxEvaluate each part separately using limits:1. For 101x2 dx:lima01a1x2 dx=lima0[1x]1a=lima0(1a+1)=+2. For 031x2 dx:limb0+b31x2 dx=limb0+[1x]b3=limb0+(13+1b)=+Both parts diverge to +, so the original integral does not converge.ConclusionThe error in the original calculation is that it ignores the discontinuity at x=0.The integral is improper and diverges (i.e., it does not exist as a finite value).The calculation is incorrect because the integral 131x2 dx is improper (due to the discontinuity at x=0) and diverges.The correct evaluation shows that the integral does not converge to 43 or any finite value.The integral diverges because 1x2 is undefined at x=0 and the limits approach +.\begin{aligned}&\text{For improper integrals with discontinuities, we must split the integral at the point of discontinuity and take limits:} \\&\int_{-1}^{3} \frac{1}{x^2} \, dx = \int_{-1}^{0} \frac{1}{x^2} \, dx + \int_{0}^{3} \frac{1}{x^2} \, dx \\&\text{Evaluate each part separately using limits:} \\&\text{1. For } \int_{-1}^{0} \frac{1}{x^2} \, dx: \\&\lim_{a \to 0^-} \int_{-1}^{a} \frac{1}{x^2} \, dx = \lim_{a \to 0^-} \left[ -\frac{1}{x} \right]_{-1}^{a} = \lim_{a \to 0^-} \left( -\frac{1}{a} + 1 \right) = +\infty \\&\text{2. For } \int_{0}^{3} \frac{1}{x^2} \, dx: \\&\lim_{b \to 0^+} \int_{b}^{3} \frac{1}{x^2} \, dx = \lim_{b \to 0^+} \left[ -\frac{1}{x} \right]_{b}^{3} = \lim_{b \to 0^+} \left( -\frac{1}{3} + \frac{1}{b} \right) = +\infty \\&\text{Both parts diverge to } +\infty, \text{ so the original integral \textbf{does not converge}.} \\\\&\textbf{Conclusion} \\&\text{The error in the original calculation is that it ignores the discontinuity at } x = 0. \\&\text{The integral is improper and diverges (i.e., it does not exist as a finite value).} \\\\&\text{The calculation is incorrect because the integral } \int_{-1}^{3} \frac{1}{x^2} \, dx \text{ is improper (due to the discontinuity at } x = 0\text{) and diverges.} \\&\text{The correct evaluation shows that the integral does not converge to } -\frac{4}{3} \text{ or any finite value.} \\\\&{\text{The integral diverges because } \frac{1}{x^2} \text{ is undefined at } x = 0 \text{ and the limits approach } +\infty.}\end{aligned}​​

test-prime-package

Access ‘AAI JE ATC’ Mock Tests with

  • 60000+ Mocks and Previous Year Papers
  • Unlimited Re-Attempts
  • Personalised Report Card
  • 500% Refund on Final Selection
  • Largest Community
students-icon
236k+ students have already unlocked exclusive benefits with Test Prime!
test-prime-package

Access ‘AAI JE ATC’ Mock Tests with

  • 60000+ Mocks and Previous Year Papers
  • Unlimited Re-Attempts
  • Personalised Report Card
  • 500% Refund on Final Selection
  • Largest Community
students-icon
236k+ students have already unlocked exclusive benefits with Test Prime!
Our Plans
Monthsup-arrow