arrow
arrow
arrow
The value of the integral ∫0∞e−x2 dx\int_0^{\infty} e^{-x^2} \, dx∫0∞​e−x2dx is​
Question

The value of the integral 0ex2 dx\int_0^{\infty} e^{-x^2} \, dx is​

A.

π4\frac{\pi}{4}​​

B.

π2\frac{\pi}{2}​​

C.

π4\sqrt{\frac{\pi}{4}}​​

D.

12π4\frac{1}{2} \sqrt{\frac{\pi}{4}}​​

Correct option is C

Solution:

We want to evaluate:0ex2 dx Let I=ex2 dx Then I2=(ex2 dx)2=e(x2+y2) dx dy Switching to polar coordinates: x=rcosθ, y=rsinθI2=02π0er2r dr dθ=(02πdθ)(0rer2 dr) =2π(12)=π=>I=π Hence, 0ex2 dx=12ex2 dx=π2\text{We want to evaluate:} \quad \int_0^\infty e^{-x^2} \, dx\\\ \\\text{Let } I = \int_{-\infty}^{\infty} e^{-x^2} \, dx\\\ \\\text{Then } I^2 = \left( \int_{-\infty}^{\infty} e^{-x^2} \, dx \right)^2 = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-(x^2 + y^2)} \, dx \, dy\\\ \\\text{Switching to polar coordinates: } x = r \cos \theta, \, y = r \sin \theta\\I^2 = \int_0^{2\pi} \int_0^\infty e^{-r^2} \cdot r \, dr \, d\theta = \left( \int_0^{2\pi} d\theta \right) \left( \int_0^\infty r e^{-r^2} \, dr \right)\\\ \\= 2\pi \cdot \left( \frac{1}{2} \right) = \pi \Rightarrow I = \sqrt{\pi}\\\ \\\text{Hence, } \int_0^\infty e^{-x^2} \, dx = \frac{1}{2} \int_{-\infty}^\infty e^{-x^2} \, dx = \frac{\sqrt{\pi}}{2}

π2=π4\frac{\sqrt{\pi}}{2}=\sqrt{\frac{\pi}{4}}

​​​

​​

Free Tests

Free
Must Attempt

DSSSB PRT PYP (11 November 2018)

languageIcon English
  • pdpQsnIcon200 Questions
  • pdpsheetsIcon200 Marks
  • timerIcon120 Mins
languageIcon English
Free
Must Attempt

CDP Subject Test 01

languageIcon English
  • pdpQsnIcon20 Questions
  • pdpsheetsIcon20 Marks
  • timerIcon20 Mins
languageIcon English
Free
Must Attempt

EVS Subject Test 01

languageIcon English
  • pdpQsnIcon20 Questions
  • pdpsheetsIcon20 Marks
  • timerIcon20 Mins
languageIcon English
test-prime-package

Access ‘WB SLST’ Mock Tests with

  • 60000+ Mocks and Previous Year Papers
  • Unlimited Re-Attempts
  • Personalised Report Card
  • 500% Refund on Final Selection
  • Largest Community
students-icon
236k+ students have already unlocked exclusive benefits with Test Prime!
Our Plans
Monthsup-arrow