arrow
arrow
arrow
the LCM and HCF of polynomial P(x) and Q(x) are 56(x4+x)56(x^4 + x)56(x4+x) and 4(x2−x+1)4(x^2 -x + 1)4(x2−x+1), respectively. If the polyn
Question

the LCM and HCF of polynomial P(x) and Q(x) are 56(x4+x)56(x^4 + x) and 4(x2x+1)4(x^2 -x + 1), respectively. If the polynomial P(x) = 28(x3+1),28(x^3 + 1), then Q(x) is equal to​

A.

6x(x2+x1)6x(x^2 + x -1)​​

B.

4x(x2x+1)4x(x^2 - x +1)​​

C.

8x(x2x+1)8x(x^2 - x +1)​​

D.

None of these

Correct option is C

Given:

LCM of P(x) and Q(x) = 56(x^4 + x)

HCF of P(x) and Q(x) is 4(x^2 - x + 1)

P(x) = 28(x^3 + 1)

We are to find Q(x)

Concept Used:
For any two polynomials:

LCM(P(x),Q(x))HCF(P(x),Q(x))=P(x)Q(x)\text{LCM}(P(x), Q(x)) \cdot \text{HCF}(P(x), Q(x)) = P(x) \cdot Q(x)​​

Solution:

LCM = 56(x4+x)56(x^4 + x)​​

HCF = 4(x2x+1)4(x^2 - x + 1)​​

P(x) = 28(x3+1)28(x^3 + 1) 

Using the formula;

Q(x)=56(x4+x)4(x2x+1)28(x3+1)Q(x) = \frac{56(x^4 + x) \cdot 4(x^2 - x + 1)}{28(x^3 + 1)}​ 

Q(x) = 8x(x+1)(x2x+1)(x2x+1)(x+1)(x2x+1)8 \cdot \frac{x(x + 1)(x^2 - x + 1) \cdot (x^2 - x + 1)}{(x + 1)(x^2 - x + 1)}​​

Q(x) =8x(x2x+1)= 8x(x^2 - x + 1)​​

test-prime-package

Access ‘UP B.Ed JEE’ Mock Tests with

  • 60000+ Mocks and Previous Year Papers
  • Unlimited Re-Attempts
  • Personalised Report Card
  • 500% Refund on Final Selection
  • Largest Community
students-icon
223k+ students have already unlocked exclusive benefits with Test Prime!

Free Tests

Free
Must Attempt

UPSSSC PET PYP (Held on 28th Oct 2023 Shift 1)

languageIcon English
  • pdpQsnIcon100 Questions
  • pdpsheetsIcon100 Marks
  • timerIcon120 Mins
languageIcon English
Free
Must Attempt

UPSSSC PET History : Subject Test 01

languageIcon English
  • pdpQsnIcon10 Questions
  • pdpsheetsIcon10 Marks
  • timerIcon10 Mins
languageIcon English
Free
Must Attempt

UP SI PYP (Held on 13th Nov 2021 Shift 2)

languageIcon English
  • pdpQsnIcon160 Questions
  • pdpsheetsIcon400 Marks
  • timerIcon120 Mins
languageIcon English