arrow
arrow
arrow
Factorise the polynomial x4−10x2+22x^4 - 10x^2 + 22x4−10x2+22​ into product of two quadratic polynomials.
Question

Factorise the polynomial x410x2+22x^4 - 10x^2 + 22​ into product of two quadratic polynomials.

A.

(x24+3)(x243)(x^2 - 4 + \sqrt{3})(x^2 - 4 - \sqrt{3}) \\​​

B.

(x23+3)(x233)(x^2 - 3 + \sqrt{3})(x^2 - 3 - \sqrt{3}) \\​​

C.

(x22+3)(x223)(x^2 - 2 + \sqrt{3})(x^2 - 2 - \sqrt{3}) \\​​

D.

(x25+3)(x253)(x^2 - 5 + \sqrt{3})(x^2 - 5 - \sqrt{3})​​

Correct option is D

Given:
x410x2+22. x^4 - 10x^2 + 22. 
Formula Used:
Roots of equation=b±b24ac2a\text{Roots of equation} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} 
Solution:
Let y = x^2
Given Polynomial becomes y210y+22.y^2 - 10y + 22.​​
Roots of equation=b±b24ac2a\text{Roots of equation} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}
where a = 1, b = -10, and c = 22.

Therefore, the two roots of the quadratic are:
y = 5 + √3 and y = 5 - √3
Now, substitute y = x^2 back into the factored form:
(x^2 - (5 + √3))(x^2 - (5 - √3))
The factorisation of x^4 - 10x^2 + 22 is: (x^2 - (5 + √3))(x^2 - (5 - √3))

test-prime-package

Access ‘RRB NTPC’ Mock Tests with

  • 60000+ Mocks and Previous Year Papers
  • Unlimited Re-Attempts
  • Personalised Report Card
  • 500% Refund on Final Selection
  • Largest Community
students-icon
176k+ students have already unlocked exclusive benefits with Test Prime!

Free Tests

Free
Must Attempt

RRB Technician Gr.III Full Mock Test 1

languageIcon English
  • pdpQsnIcon100 Questions
  • pdpsheetsIcon100 Marks
  • timerIcon90 Mins
languageIcon English
Free
Must Attempt

RRB Technician Grade-3 PYP (20 Dec 2024 S2)

languageIcon English
  • pdpQsnIcon100 Questions
  • pdpsheetsIcon100 Marks
  • timerIcon90 Mins
languageIcon English
Free
Must Attempt

General Science Section Test 01

languageIcon English
  • pdpQsnIcon40 Questions
  • pdpsheetsIcon40 Marks
  • timerIcon20 Mins
languageIcon English