Correct option is A
Given:
x = 110, y = 111, z = 112
We need to find the value of:
x3+y3+z3−3xyz
Formula Used:
x3+y3+z3−3xyz=(x+y+z)(x2+y2+z2−xy−yz−zx)
Solution:
x + y + z = 110 + 111 + 112 = 333
x2+y2+z2=1102+1112+1122=12100+12321+12544=36965
xy + yz + zx = 12210 + 12432 + 12320 = 36962
x2+y2+z2−(xy+yz+zx)=36965−36962=3
x3+y3+z3−3xyz=(x+y+z)(x2+y2+z2−xy−yz−zx)=333×3=999
Thus, the value of x3+y3+z3−3xyz is 999.
Alternate Solution:
Using formula;
x3+y3+z3−3xyz=21(x+y+z)[(x−y)2+(y−z)2+(z−x)2]
=21(110+111+112)[(110−111)2+(111−112)2+(112−110)2] =21(333)[(1)2+(1)2+(2)2] =21(333)[6] =333×3 =999