Correct option is A
Given:
(289×289−289×111+111×111)(289×289×289+111×111×111)
Concept Used:
a3+b3=(a+b)(a2−ab+b2)
Solution:
(289×289−289×111+111×111)(289×289×289+111×111×111)
Let:
a =289 and b= 111
Thus, the expression becomes:
(a×a−a×b+b×b)(a×a×a+b×b×b)
The numerator is:
a×a×a+b×b×b=a3+b3
Using the identity for the sum of cubes:
a3+b3=(a+b)(a2−ab+b2)
Thus, the numerator becomes: (a+b)(a2−ab+b2)
The denominator is:
a×a−a×b+b×b=a2−ab+b2
Now, substitute the simplified numerator and denominator into the original expression:
a2−ab+b2(a+b)(a2−ab+b2) = (a + b)
Now, that a=289 and b=111. Thus, the simplified expression is:
289 + 111 = 400
The simplified value of the expression is: 400.