Correct option is AGiven: 1cosecθ−cotθ\frac{1}{\cosec\theta -\cot \theta}cosecθ−cotθ1 Formula Used: 1+cot2θ=cosec2θ1+\cot^2 \theta = \cosec^2 \theta1+cot2θ=cosec2θSolution:1(cosecθ−cotθ)×(cosecθ+cotθ)(cosecθ+cotθ) This yields: =(cosecθ+cotθ)(cosecθ)2−(cotθ)2 =(cosecθ+cotθ)1 =cosecθ+cotθ\frac{1}{\left(\cosec \theta - \cot \theta\right)} \times \frac{\left(\cosec \theta + \cot \theta\right)}{\left(\cosec \theta + \cot \theta\right)} \\ \ \\\text{This yields:} \\ \ \\= \frac{\left(\cosec \theta + \cot \theta\right)}{\left(\cosec \theta\right)^2 - \left(\cot \theta\right)^2} \\ \ \\= \frac{\left(\cosec \theta + \cot \theta\right)}{1} \\ \ \\= \cosec \theta + \cot \theta(cosecθ−cotθ)1×(cosecθ+cotθ)(cosecθ+cotθ) This yields: =(cosecθ)2−(cotθ)2(cosecθ+cotθ) =1(cosecθ+cotθ) =cosecθ+cotθ