Correct option is BGiven: sin4θ−cos4θ=12\sin^4 \theta - \cos^4 \theta = \frac{1}{2}sin4θ−cos4θ=21 Formula Used: a4−b4=(a2−b2)(a2+b2) sin2θ+cos2θ=1a^4 -b^4 =(a^2-b^2)(a^2+b^2) \\ \ \\ \sin^2\theta +\cos^2\theta = 1a4−b4=(a2−b2)(a2+b2) sin2θ+cos2θ=1Solution: sin4θ−cos4θ=12 (sin2θ−cos2θ)(sin2θ+cos2θ)=12 sin2θ−cos2θ=12 sin2θ−(1−sin2θ)=12 2sin2θ−1=12\sin^4 \theta - \cos^4 \theta = \frac{1}{2} \\ \ \\ (\sin^2 \theta - \cos^2 \theta)(\sin^2 \theta + \cos^2 \theta) = \frac{1}{2} \\ \ \\ \sin^2 \theta - \cos^2 \theta = \frac{1}{2} \\ \ \\ \sin^2 \theta - (1 -\sin^2 \theta) = \frac{1}{2} \\ \ \\ 2\sin^2 \theta -1 = \frac{1}{2}sin4θ−cos4θ=21 (sin2θ−cos2θ)(sin2θ+cos2θ)=21 sin2θ−cos2θ=21 sin2θ−(1−sin2θ)=21 2sin2θ−1=21