Correct option is DGiven:x+1x=17x + \frac{1}{x} = 17x+x1=17Formula Used:(x+1x)2=x2+2⋅x⋅1x+1x2=x2+2+1x2\left(x + \frac{1}{x}\right)^2 = x^2 + 2 \cdot x \cdot \frac{1}{x} + \frac{1}{x^2} = x^2 + 2 + \frac{1}{x^2}(x+x1)2=x2+2⋅x⋅x1+x21=x2+2+x21Solution:x+1x=17 (x+1x)2=172 x2+2⋅x⋅1x+1x2=289 x2+2+1x2=289 x2+1x2=289−2 x2+1x2=287x + \frac{1}{x} = 17 \\ \ \\\left(x + \frac{1}{x}\right)^2 = 17^2 \\ \ \\x^2 + 2 \cdot x \cdot \frac{1}{x} + \frac{1}{x^2} = 289 \\ \ \\x^2 + 2 + \frac{1}{x^2} = 289 \\ \ \\x^2 + \frac{1}{x^2} = 289- 2 \\ \ \\x^2 + \frac{1}{x^2} = 287x+x1=17 (x+x1)2=172 x2+2⋅x⋅x1+x21=289 x2+2+x21=289 x2+x21=289−2 x2+x21=287