If a2+b2=90a^2+b^2 = 90a2+b2=90 and ab = 27, then find the possible value of a+ba−b.\frac{a+b}{a-b}.a−ba+b.
Question
If a2+b2=90 and ab = 27, then find the possible value of a−ba+b.
A.
2
B.
4
C.
3
D.
1
Correct option is A
Given: a2+b2=90 and ab = 27 Formula Used: (a−b)2=a2+b2−2ab(a+b)2=a2+b2+2ab Solution: (a+b)2=a2+b2+2ab(a+b)2=90+2×27(a+b)2=90+54=144So,(a+b)=144=12(a−b)2=a2+b2−2ab(a−b)2=90−2×27(a−b)2=90−54=36So,(a−b)=36=6(a+b)=12and(a−b)=6 The possible value of a−ba+b=612=2
Free Tests
Free
Must Attempt
RRB NTPC CBT-1 (Undergraduate Level) Mock 1
English
100 Questions
100 Marks
90 Mins
English
Free
Must Attempt
RRB NTPC Graduate Level PYP (Held on 5 Jun 2025 S1)