arrow
arrow
arrow
If  a2+b2=90a^2+b^2 = 90a2+b2=90​ and ab = 27, then find the possible value of a+ba−b.\frac{a+b}{a-b}.a−ba+b​.​​
Question

If  a2+b2=90a^2+b^2 = 90 and ab = 27, then find the possible value of a+bab.\frac{a+b}{a-b}.​​

A.

2

B.

4

C.

3

D.

1

Correct option is A

Given:
  a2+b2=90a^2+b^2 = 90 and ab = 27
Formula Used:
(ab)2=a2+b22ab(a+b)2=a2+b2+2ab(a-b)^2 = a^2+ b^2- 2ab \\ (a+ b)^2 = a^2+ b^2+ 2ab\\ 
Solution:
(a+b)2=a2+b2+2ab(a+b)2=90+2×27(a+b)2=90+54=144So,(a+b)=144=12(ab)2=a2+b22ab(ab)2=902×27(ab)2=9054=36So,(ab)=36=6(a+b)=12and(ab)=6(a + b)^2 = a^2 + b^2 + 2ab \\(a + b)^2 = 90 + 2 × 27 \\(a + b)^2 = 90 + 54 = 144 \\So, (a + b) = \sqrt{144} = 12 \\(a - b)^2 = a^2 + b^2 - 2ab \\(a - b)^2 = 90 - 2 × 27 \\(a - b)^2 = 90 - 54 = 36 \\So, (a - b) = \sqrt{36} = 6 \\(a + b) = 12 \text{and} (a - b) = 6 \\​​
The possible value of a+bab=126=2\frac{a + b}{a - b} = \frac{12}6=2​​

Free Tests

Free
Must Attempt

RRB NTPC CBT-1 (Undergraduate Level) Mock 1

languageIcon English
  • pdpQsnIcon100 Questions
  • pdpsheetsIcon100 Marks
  • timerIcon90 Mins
languageIcon English
Free
Must Attempt

RRB NTPC Graduate Level PYP (Held on 5 Jun 2025 S1)

languageIcon English
  • pdpQsnIcon100 Questions
  • pdpsheetsIcon100 Marks
  • timerIcon90 Mins
languageIcon English
Free
Must Attempt

RRC Grp D General Science Section Test 1

languageIcon English
  • pdpQsnIcon25 Questions
  • pdpsheetsIcon25 Marks
  • timerIcon15 Mins
languageIcon English
test-prime-package

Access ‘RRB NTPC’ Mock Tests with

  • 60000+ Mocks and Previous Year Papers
  • Unlimited Re-Attempts
  • Personalised Report Card
  • 500% Refund on Final Selection
  • Largest Community
students-icon
235k+ students have already unlocked exclusive benefits with Test Prime!
Our Plans
Monthsup-arrow