hamburger menu
All Coursesall course arrow
adda247
reward-icon
adda247
    arrow
    arrow
    arrow
    If  a2+b2=90a^2+b^2 = 90a2+b2=90​ and ab = 27, then find the possible value of a+ba−b.\frac{a+b}{a-b}.a−ba+b​.​​
    Question

    If  a2+b2=90a^2+b^2 = 90 and ab = 27, then find the possible value of a+bab.\frac{a+b}{a-b}.​​

    A.

    2

    B.

    4

    C.

    3

    D.

    1

    Correct option is A

    Given:
      a2+b2=90a^2+b^2 = 90 and ab = 27
    Formula Used:
    (ab)2=a2+b22ab(a+b)2=a2+b2+2ab(a-b)^2 = a^2+ b^2- 2ab \\ (a+ b)^2 = a^2+ b^2+ 2ab\\ 
    Solution:
    (a+b)2=a2+b2+2ab(a+b)2=90+2×27(a+b)2=90+54=144So,(a+b)=144=12(ab)2=a2+b22ab(ab)2=902×27(ab)2=9054=36So,(ab)=36=6(a+b)=12and(ab)=6(a + b)^2 = a^2 + b^2 + 2ab \\(a + b)^2 = 90 + 2 × 27 \\(a + b)^2 = 90 + 54 = 144 \\So, (a + b) = \sqrt{144} = 12 \\(a - b)^2 = a^2 + b^2 - 2ab \\(a - b)^2 = 90 - 2 × 27 \\(a - b)^2 = 90 - 54 = 36 \\So, (a - b) = \sqrt{36} = 6 \\(a + b) = 12 \text{and} (a - b) = 6 \\​​
    The possible value of a+bab=126=2\frac{a + b}{a - b} = \frac{12}6=2​​

    Free Tests

    Free
    Must Attempt

    RRB NTPC CBT-2 (Graduate) Mock 1

    languageIcon English
    • pdpQsnIcon120 Questions
    • pdpsheetsIcon120 Marks
    • timerIcon90 Mins
    languageIcon English
    Free
    Must Attempt

    RRB NTPC CBT-2 (12th) Mock 1

    languageIcon English
    • pdpQsnIcon120 Questions
    • pdpsheetsIcon120 Marks
    • timerIcon90 Mins
    languageIcon English
    Free
    Must Attempt

    RRC Grp D General Science Section Test 1

    languageIcon English
    • pdpQsnIcon25 Questions
    • pdpsheetsIcon25 Marks
    • timerIcon15 Mins
    languageIcon English
    test-prime-package

    Access ‘RRB NTPC’ Mock Tests with

    • 60000+ Mocks and Previous Year Papers
    • Unlimited Re-Attempts
    • Personalised Report Card
    • 500% Refund on Final Selection
    • Largest Community
    students-icon
    254k+ students have already unlocked exclusive benefits with Test Prime!
    Our Plans
    Monthsup-arrow