If a + b = 41, and a − b = 38, find the value of (a + b)².
1763
1733
1759
1681
Given:
a + b = 41
a - b = 38
Solution:
(a+b)2=412(a + b)^2 = 41^2 (a+b)2=412 = 1681
Simplify: 4(74x2−27x+19)−7(x2+9x−14)\text{Simplify: } 4\left(\frac{7}{4}x^2 - 27x + 19\right) - 7(x^2 + 9x - 14)Simplify: 4(47x2−27x+19)−7(x2+9x−14)
If a2+b2=90a^2+b^2 = 90a2+b2=90 and ab = 27, then find the possible value of a+ba−b.\frac{a+b}{a-b}.a−ba+b.
If x+1x=17 then x2+1x2 is:\text{If }x + \frac{ 1}{x} = 17 \text{ then }x^2 + \frac{ 1}{x^2} \text{ is:}If x+x1=17 then x2+x21 is: