arrow
arrow
arrow
Which of the following statement(s) is/are correct? ​I.37<59<711II.6>123\text{I.} \quad \frac{3}{7} < \frac{5}{9} < \frac{7}{11} \\\te
Question

Which of the following statement(s) is/are correct?
I.37<59<711II.6>123\text{I.} \quad \frac{3}{7} < \frac{5}{9} < \frac{7}{11} \\\text{II.} \quad \sqrt{6} > \sqrt[3]{12}​​

A.

Only I

B.

Only II

C.

Neither I nor II

D.

Both I and II

Correct option is D

Given:
I.37<59<711 II.6>123\text{I.} \quad \frac{3}{7} < \frac{5}{9} < \frac{7}{11} \\\ \\\text{II.} \quad \sqrt{6} > \sqrt[3]{12}​​
Solution:
Statement I:
I.37<59<711\text{I.} \quad \frac{3}{7} < \frac{5}{9} < \frac{7}{11} \\​​
LCM of (7, 9 , 11) = 693
37=3×99693=297693 59=5×77693=385693 711=7×63693=441693 Thus, 37<59<711 \frac{3}{7} = \frac{3 \times 99}{693} = \frac{297}{693} \\\ \\\frac{5}{9} = \frac{5 \times 77}{693} = \frac{385}{693} \\\ \\\frac{7}{11} = \frac{7 \times 63}{693} = \frac{441}{693} \\\ \\\text{Thus, } \frac{3}{7} < \frac{5}{9} < \frac{7}{11} \\\ \\​​
Statement 1 is correct.
Statement 2:
II.6>123\text{II.} \quad \sqrt{6} > \sqrt[3]{12}​​
(6)6=612×6=63=216 (123)6=1213×6=122=144 (\sqrt{6})^6 = 6^{\frac{1}{2} \times 6} = 6^3 = 216 \\\ \\(\sqrt[3]{12})^6 = 12^{\frac{1}{3} \times 6} = 12^2 = 144 \\\ \\
Thus,
Since 216>144, therefore 6>123\text{Since } 216 > 144,\ \text{therefore } \sqrt{6} > \sqrt[3]{12}​​

Statement 2 is correct.
∴ Both statements are correct.

test-prime-package

Access ‘IB ACIO’ Mock Tests with

  • 60000+ Mocks and Previous Year Papers
  • Unlimited Re-Attempts
  • Personalised Report Card
  • 500% Refund on Final Selection
  • Largest Community
students-icon
192k+ students have already unlocked exclusive benefits with Test Prime!

Free Tests

Free
Must Attempt

General Awareness Section Test 01

languageIcon English
  • pdpQsnIcon20 Questions
  • pdpsheetsIcon20 Marks
  • timerIcon8 Mins
languageIcon English
Free
Must Attempt

National Weekly Current Affairs Jun 2025 Practice Set 01

languageIcon English
  • pdpQsnIcon25 Questions
  • pdpsheetsIcon25 Marks
  • timerIcon15 Mins
languageIcon English
Free
Must Attempt

IB ACIO Grade-II Executive (Held on 17 Jan 2024 S1)

languageIcon English
  • pdpQsnIcon100 Questions
  • pdpsheetsIcon100 Marks
  • timerIcon60 Mins
languageIcon English