Correct option is A
Given: 8 6 , 3 4 , 2 3 , 12 12 \sqrt[6]{8},\quad \sqrt[4]{3},\quad \sqrt[3]{2},\quad \sqrt[12]{12} 6 8 , 4 3 , 3 2 , 12 12 Solution: 8 6 , 3 4 , 2 3 , 12 12 = 8 1 6 , 3 1 4 , 2 1 3 , 12 1 12 (LCM of denominators = 12) Multiply all exponents by 12: ( 8 1 6 ) 12 = 8 2 = 64 , ( 3 1 4 ) 12 = 3 3 = 27 ( 2 1 3 ) 12 = 2 4 = 16 ( 12 1 12 ) 12 = 12 So, 64 > 27 > 16 > 12 => 8 6 > 3 4 > 2 3 > 12 12 \sqrt[6]{8},\quad \sqrt[4]{3},\quad \sqrt[3]{2},\quad \sqrt[12]{12}\\= 8^{\frac{1}{6}},\quad 3^{\frac{1}{4}},\quad 2^{\frac{1}{3}},\quad 12^{\frac{1}{12}}\\\text{(LCM of denominators = 12)}\\\text{Multiply all exponents by 12:}\\(8^{\frac{1}{6}})^{12} = 8^2 = 64, \\ (3^{\frac{1}{4}})^{12} = 3^3 = 27\\ (2^{\frac{1}{3}})^{12} = 2^4 = 16\\ (12^{\frac{1}{12}})^{12} = 12\\\text{So, } 64 > 27 > 16 > 12\\\Rightarrow \sqrt[6]{8} > \sqrt[4]{3} > \sqrt[3]{2} > \sqrt[12]{12} 6 8 , 4 3 , 3 2 , 12 12 = 8 6 1 , 3 4 1 , 2 3 1 , 1 2 12 1 (LCM of denominators = 12) Multiply all exponents by 12: ( 8 6 1 ) 12 = 8 2 = 64 , ( 3 4 1 ) 12 = 3 3 = 27 ( 2 3 1 ) 12 = 2 4 = 16 ( 1 2 12 1 ) 12 = 12 So, 64 > 27 > 16 > 12 => 6 8 > 4 3 > 3 2 > 12 12