arrow
arrow
arrow
The velocity field of a certain two dimensional flow is given by V (x, y )= k (xi−yj)(x_i− y_j)(xi​−yj​)​ where k = 2 / s and x and y are in mete
Question

The velocity field of a certain two dimensional flow is given by V (x, y )= k (xiyj)(x_i− y_j)​ where k = 2 / s and x and y are in meters. If the fluid density is 100 kg/m3m^3 ​ and pressure at origin is 10 kPa, what is the pressure at point (3,3)?

A.

3.2 kPa

B.

6.4 kPa

C.

1.6 kPa

D.

None 

Correct option is B

 Velocity field: V(x,y)=k(xi^yj^) k=2 s1 Fluid density: ρ=100 kg/m3 Pressure at origin (0,0): P0=10 kPa=10000 Pa Find pressure at point (3,3)\bullet \ \text{Velocity field: } \vec{V}(x, y) = k(x\hat{i} - y\hat{j}) \\\bullet \ k = 2 \ \text{s}^{-1} \\\bullet \ \text{Fluid density: } \rho = 100 \ \text{kg/m}^3 \\\bullet \ \text{Pressure at origin } (0, 0): \ P_0 = 10 \ \text{kPa} = 10000 \ \text{Pa} \\\bullet \ \text{Find pressure at point } (3, 3)

Assuming steady, incompressible, inviscid, irrotational flow, we use Bernoulli’s equation:P+12ρV2=constantApply this between the origin and point (3,3):P1+12ρV12=P2+12ρV22Compute VelocitiesAt origin (0,0):V1=k(0i^0j^)=0=>V1=0At point (3,3):V2=k(3i^3j^)=2(3i^3j^)=6i^6j^V2=62+(6)2=36+36=72=62 m/sApply Bernoulli EquationP1=10000 Pa,V1=0,V2=6210000+0=P2+12100(62)210000=P2+5072=P2+3600P2=100003600=6400 Pa=6.4 kPa\text{Assuming \textbf{steady, incompressible, inviscid, irrotational} flow, we use Bernoulli's equation:} \\P + \frac{1}{2} \rho V^2 = \text{constant} \\\text{Apply this between the origin and point } (3, 3): \\P_1 + \frac{1}{2} \rho V_1^2 = P_2 + \frac{1}{2} \rho V_2^2 \\\\\textbf{Compute Velocities} \\\text{At origin } (0, 0): \\\vec{V}_1 = k(0\hat{i} - 0\hat{j}) = 0 \Rightarrow V_1 = 0 \\\text{At point } (3, 3): \\\vec{V}_2 = k(3\hat{i} - 3\hat{j}) = 2(3\hat{i} - 3\hat{j}) = 6\hat{i} - 6\hat{j} \\V_2 = \sqrt{6^2 + (-6)^2} = \sqrt{36 + 36} = \sqrt{72} = 6\sqrt{2} \ \text{m/s} \\\\\textbf{Apply Bernoulli Equation} \\P_1 = 10000 \ \text{Pa}, \quad V_1 = 0, \quad V_2 = 6\sqrt{2} \\10000 + 0 = P_2 + \frac{1}{2} \cdot 100 \cdot (6\sqrt{2})^2 \\10000 = P_2 + 50 \cdot 72 = P_2 + 3600 \\P_2 = 10000 - 3600 = 6400 \ \text{Pa} = \boxed{6.4 \ \text{kPa}}​​​

test-prime-package

Access ‘ISRO Mechanical Engineering’ Mock Tests with

  • 60000+ Mocks and Previous Year Papers
  • Unlimited Re-Attempts
  • Personalised Report Card
  • 500% Refund on Final Selection
  • Largest Community
students-icon
211k+ students have already unlocked exclusive benefits with Test Prime!
test-prime-package

Access ‘ISRO Mechanical Engineering’ Mock Tests with

  • 60000+ Mocks and Previous Year Papers
  • Unlimited Re-Attempts
  • Personalised Report Card
  • 500% Refund on Final Selection
  • Largest Community
students-icon
211k+ students have already unlocked exclusive benefits with Test Prime!