arrow
arrow
arrow
A spherical water drop of diameter 2 mm splits in to 8 small drops of equal size in air at temperature of 25°C. The surface tension coefficient of wat
Question

A spherical water drop of diameter 2 mm splits in to 8 small drops of equal size in air at temperature of 25°C. The surface tension coefficient of water in air is 0.073 N/m and dynamic viscosity is 0.01 poise. The approximate work done in splitting up the drop is

A.

0.29 ×106J× 10^{-6} J

B.

0.92 ×106J× 10^{-6} J

C.

0.86 ×106J× 10^{-6} J

D.

0.78 ×106J× 10^{-6} J​​

Correct option is B

Given:Diameter of original drop, D=2 mm=2×103 mRadius of original drop, R=1×103 mNumber of smaller drops formed =8Surface tension, σ=0.073 N/mViscosity is not required for this problem.Volume ConservationLet radius of each smaller drop be r.Since volume is conserved:43πR3=8×43πr3=>R3=8r3=>r=(R38)1/3=R2=1×1032=0.5×103 mSurface Area CalculationSurface area of original drop:A1=4πR2=4π(1×103)2=4π×106 m2Surface area of 8 small drops:A2=8×4πr2=8×4π(0.5×103)2=8×4π×0.25×106=8π×106 m2Work Done = Increase in Surface EnergyW=σ(A2A1)=0.073×(8π×1064π×106)=0.073×4π×106W=0.073×4×3.1416×106=0.073×12.5664×106=0.918×106 JW0.92 μJ\textbf{Given:} \\\text{Diameter of original drop, } D = 2 \ \text{mm} = 2 \times 10^{-3} \ \text{m} \\\text{Radius of original drop, } R = 1 \times 10^{-3} \ \text{m} \\\text{Number of smaller drops formed } = 8 \\\text{Surface tension, } \sigma = 0.073 \ \text{N/m} \\\text{Viscosity is not required for this problem.} \\\\\textbf{Volume Conservation} \\\text{Let radius of each smaller drop be } r. \\\text{Since volume is conserved:} \\\frac{4}{3} \pi R^3 = 8 \times \frac{4}{3} \pi r^3 \Rightarrow R^3 = 8r^3 \Rightarrow r = \left(\frac{R^3}{8}\right)^{1/3} = \frac{R}{2} = \frac{1 \times 10^{-3}}{2} = 0.5 \times 10^{-3} \ \text{m} \\\\\textbf{Surface Area Calculation} \\\text{Surface area of original drop:} \\A_1 = 4 \pi R^2 = 4 \pi (1 \times 10^{-3})^2 = 4 \pi \times 10^{-6} \ \text{m}^2 \\\text{Surface area of 8 small drops:} \\A_2 = 8 \times 4 \pi r^2 = 8 \times 4 \pi (0.5 \times 10^{-3})^2 = 8 \times 4 \pi \times 0.25 \times 10^{-6} = 8 \pi \times 10^{-6} \ \text{m}^2 \\\\\textbf{Work Done = Increase in Surface Energy} \\W = \sigma (A_2 - A_1) = 0.073 \times (8 \pi \times 10^{-6} - 4 \pi \times 10^{-6}) = 0.073 \times 4 \pi \times 10^{-6} \\W = 0.073 \times 4 \times 3.1416 \times 10^{-6} = 0.073 \times 12.5664 \times 10^{-6} = 0.918 \times 10^{-6} \ \text{J} \\\boxed{W \approx 0.92 \ \mu \text{J}}​​

test-prime-package

Access ‘ISRO Mechanical Engineering’ Mock Tests with

  • 60000+ Mocks and Previous Year Papers
  • Unlimited Re-Attempts
  • Personalised Report Card
  • 500% Refund on Final Selection
  • Largest Community
students-icon
211k+ students have already unlocked exclusive benefits with Test Prime!
test-prime-package

Access ‘ISRO Mechanical Engineering’ Mock Tests with

  • 60000+ Mocks and Previous Year Papers
  • Unlimited Re-Attempts
  • Personalised Report Card
  • 500% Refund on Final Selection
  • Largest Community
students-icon
211k+ students have already unlocked exclusive benefits with Test Prime!