Correct option is B
Given:Diameter of original drop, D=2 mm=2×10−3 mRadius of original drop, R=1×10−3 mNumber of smaller drops formed =8Surface tension, σ=0.073 N/mViscosity is not required for this problem.Volume ConservationLet radius of each smaller drop be r.Since volume is conserved:34πR3=8×34πr3=>R3=8r3=>r=(8R3)1/3=2R=21×10−3=0.5×10−3 mSurface Area CalculationSurface area of original drop:A1=4πR2=4π(1×10−3)2=4π×10−6 m2Surface area of 8 small drops:A2=8×4πr2=8×4π(0.5×10−3)2=8×4π×0.25×10−6=8π×10−6 m2Work Done = Increase in Surface EnergyW=σ(A2−A1)=0.073×(8π×10−6−4π×10−6)=0.073×4π×10−6W=0.073×4×3.1416×10−6=0.073×12.5664×10−6=0.918×10−6 JW≈0.92 μJ