arrow
arrow
arrow
The surface area of a sphere is 25π\piπ cm². The volume of the sphere is:​
Question

The surface area of a sphere is 25π\pi cm². The volume of the sphere is:​

A.

509π3 cm3\frac{509\pi}{3} \, \text{cm}^3 \\​​

B.

125π3 cm3\frac{125\pi}{3} \, \text{cm}^3 \\​​

C.

500π3 cm3\frac{500\pi}{3} \, \text{cm}^3 \\​​

D.

125π6 cm3\frac{125\pi}{6} \, \text{cm}^3​​

Correct option is D

Given:

Surface area of the sphere = 25π cm²

Concept Used:

Surface area of a sphere: A = 4πr²
Volume of a sphere: V = (43\frac{4}{3}​)πr³

Formula Used:

A = 4πr²
V = (43\frac{4}{3}​)πr³

Solution:

Given that the surface area A = 25π.
Using the formula for surface area:
A = 4πr²
25π = 4πr²
25 = 4r²
r² = 25 / 4
r2=254 r=52r² = \frac{25}{4}\\\ \\r = \frac{5}{2}​​
Now, use the radius to calculate the volume V:
V=(43)πr3 V=(43)π(52)3 V=(43)π×1258 V=50024π V=1256πcm3V = (\frac{4}{3})πr³ \\\ \\V = (\frac{4}{3})π(\frac{5}{2})³ \\\ \\V = (\frac{4}{3})π × \frac{125}{8 }\\\ \\V = \frac{500}{24 }π \\\ \\V = \frac{125}{6} π cm³​​

test-prime-package

Access ‘RRB NTPC’ Mock Tests with

  • 60000+ Mocks and Previous Year Papers
  • Unlimited Re-Attempts
  • Personalised Report Card
  • 500% Refund on Final Selection
  • Largest Community
students-icon
176k+ students have already unlocked exclusive benefits with Test Prime!

Free Tests

Free
Must Attempt

RRB Technician Gr.III Full Mock Test 1

languageIcon English
  • pdpQsnIcon100 Questions
  • pdpsheetsIcon100 Marks
  • timerIcon90 Mins
languageIcon English
Free
Must Attempt

General Science Section Test 01

languageIcon English
  • pdpQsnIcon40 Questions
  • pdpsheetsIcon40 Marks
  • timerIcon20 Mins
languageIcon English
Free
Must Attempt

RRB ALP CBT-I Mock 1

languageIcon English
  • pdpQsnIcon75 Questions
  • pdpsheetsIcon75 Marks
  • timerIcon60 Mins
languageIcon English