arrow
arrow
arrow
If the roots of a(b−c)x2+b(c−a)x+c(a−b)=0a(b-c)x^2+b(c-a)x+c(a-b)=0a(b−c)x2+b(c−a)x+c(a−b)=0​ are equal, then a,b,ca, b, ca,b,c​ are:
Question

If the roots of a(bc)x2+b(ca)x+c(ab)=0a(b-c)x^2+b(c-a)x+c(a-b)=0​ are equal, then a,b,ca, b, c​ are:

A.

in harmonic progression

B.

triplets

C.

in arithmetic progression

D.

in in geometric progression

Correct option is A

Given:
The quadratic equation a(bc)x2+b(ca)x+c(ab)=0a(b - c)x^2 + b(c - a)x + c(a - b) = 0​  has equal roots.
Concept Used:
For a quadratic equation Ax2+Bx+C=0Ax^2 + Bx + C = 0 ​, the condition for equal roots is:
Discriminant (D) = B24AC=0B^2 - 4AC = 0 ​​
Solution:
A = a(b - c), 
B = b(c - a), 
C = c(a - b).
D=B24AC=[b(ca)]24a(bc)c(ab)D = B^2 - 4AC = \left[b(c - a)\right]^2 - 4 \cdot a(b - c) \cdot c(a - b)
D=b2c22ab2c+a2b24a2bc+4ab2c+4a2c24abc2D=b^2c^2 - 2ab^2c + a^2b^2 - 4a^2bc + 4ab^2c + 4a^2c^2 - 4abc^2
D=a2b2+b2c2+4a2c2+2ab2c4a2bc4abc2D=a^2b^2 + b^2c^2 + 4a^2c^2 + 2ab^2c - 4a^2bc - 4abc^2

D = (ab + bc -2ac)2 

As we know, 

ab + bc - 2ac = 0

ab + bc = 2ac 

Dividing by abc 

1c+1a=2b\frac 1c + \frac 1a = \frac 2b  (Since, a,b,c 0)\not =0)

This shows a, b , c are in harmonic progression

​​

test-prime-package

Access ‘AAI JE ATC’ Mock Tests with

  • 60000+ Mocks and Previous Year Papers
  • Unlimited Re-Attempts
  • Personalised Report Card
  • 500% Refund on Final Selection
  • Largest Community
students-icon
167k+ students have already unlocked exclusive benefits with Test Prime!

Free Tests

Free
Must Attempt

SSC CPO T-I PYP (Held on 27 June 2024 S1)

languageIcon English
  • pdpQsnIcon200 Questions
  • pdpsheetsIcon200 Marks
  • timerIcon120 Mins
languageIcon English
Free
Must Attempt

English Comprehension Section Test 01

languageIcon English
  • pdpQsnIcon50 Questions
  • pdpsheetsIcon50 Marks
  • timerIcon20 Mins
languageIcon English
Free
Must Attempt

SSC JHT 2025 Mini Mock 1

languageIcon English
  • pdpQsnIcon100 Questions
  • pdpsheetsIcon100 Marks
  • timerIcon60 Mins
languageIcon English