arrow
arrow
arrow
If the ratio of the height to the slant height of a cone is 4 : 5 and its volume is 12936 cm³, then what will be its diameter? (Use value of π as 2
Question

If the ratio of the height to the slant height of a cone is 4 : 5 and its volume is 12936 cm³, then what will be its diameter?
(Use value of π as 22/7)

A.

21 cm

B.

42 cm

C.

42 m

D.

21 m

Correct option is B

Given:
Volume of the cone = 12936 cm³
 Ratio of height to slant height = 4 : 5
Formula Used:
Pythagoras Theorem for Cone:
l² = h² + r²
Volume of Cone = (1/3) × π × r² × h
Solution:
Let height = 4x and slant height = 5x
Using Pythagoras Theorem:
(5x)² = (4x)² + r²
25x² = 16x² + r²
r² = 9x² => r = 3x
Volume = 12936
13×227×(3x)2×4x=1293613×227×9x2×4x=1293613×227×36x3=12936x3=343x=7\frac{1}{3} \times \frac{22}{7} \times (3x)^2 \times 4x = 12936 \\\frac{1}{3} \times \frac{22}{7} \times 9x^2 \times 4x = 12936 \\\frac{1}{3} \times \frac{22}{7} \times 36x^3 = 12936 \\x^3 = 343 \\x = 7 \\​​
Then radius = 3x = 21 cm
So diameter = 2 × 21 = 42 cm



test-prime-package

Access ‘RPF Constable’ Mock Tests with

  • 60000+ Mocks and Previous Year Papers
  • Unlimited Re-Attempts
  • Personalised Report Card
  • 500% Refund on Final Selection
  • Largest Community
students-icon
178k+ students have already unlocked exclusive benefits with Test Prime!

Free Tests

Free
Must Attempt

RRB Technician Gr.III Full Mock Test 1

languageIcon English
  • pdpQsnIcon100 Questions
  • pdpsheetsIcon100 Marks
  • timerIcon90 Mins
languageIcon English
Free
Must Attempt

General Science Section Test 01

languageIcon English
  • pdpQsnIcon40 Questions
  • pdpsheetsIcon40 Marks
  • timerIcon20 Mins
languageIcon English
Free
Must Attempt

RRB ALP CBT-I Mock 1

languageIcon English
  • pdpQsnIcon75 Questions
  • pdpsheetsIcon75 Marks
  • timerIcon60 Mins
languageIcon English