arrow
arrow
arrow
If the distance between sun and earth were reduced to half its present value, then the number of days in one year would have been
Question

If the distance between sun and earth were reduced to half its present value, then the number of days in one year would have been

A.

65

B.

129

C.

258

D.

730

Correct option is B

Concept Used: Kepler’s Third Law of Planetary MotionAccording to Kepler’s Third Law:T2r3That is, the square of the orbital period of a planet is directly proportional to the cube of the radius (or semi-major axis) of its orbit.Given:Initial radius, r1, and time period T1=365 daysNew radius, r2=12r1Formula Used:T22T12=r23r13=(12)3=18T22=T128=36528=>T2=36583652.828129.05 days\textbf{Concept Used: Kepler’s Third Law of Planetary Motion} \\\text{According to Kepler’s Third Law:} \\T^2 \propto r^3 \\\text{That is, the \textbf{square of the orbital period} of a planet is \textbf{directly proportional} to the \textbf{cube of the radius} (or semi-major axis) of its orbit.}\\[10pt]\textbf{Given:} \\\bullet \text{Initial radius, } r_1, \text{ and time period } T_1 = 365\, \text{days} \\\bullet \text{New radius, } r_2 = \frac{1}{2}r_1\\[10pt]\textbf{Formula Used:} \\\frac{T_2^2}{T_1^2} = \frac{r_2^3}{r_1^3} = \left( \frac{1}{2} \right)^3 = \frac{1}{8}\\[10pt]T_2^2 = \frac{T_1^2}{8} = \frac{365^2}{8} \Rightarrow T_2 = \frac{365}{\sqrt{8}} \approx \frac{365}{2.828} \approx 129.05\, \text{days}​​

test-prime-package

Access ‘AAI JE ATC’ Mock Tests with

  • 60000+ Mocks and Previous Year Papers
  • Unlimited Re-Attempts
  • Personalised Report Card
  • 500% Refund on Final Selection
  • Largest Community
students-icon
194k+ students have already unlocked exclusive benefits with Test Prime!
test-prime-package

Access ‘AAI JE ATC’ Mock Tests with

  • 60000+ Mocks and Previous Year Papers
  • Unlimited Re-Attempts
  • Personalised Report Card
  • 500% Refund on Final Selection
  • Largest Community
students-icon
194k+ students have already unlocked exclusive benefits with Test Prime!