Correct option is AGiven: (16)−3+(12)−3+(13)−3(\frac{1}{6})^{-3} + (\frac{1}{2})^{-3} + (\frac{1}{3})^{-3}(61)−3+(21)−3+(31)−3Concept Used: 1n=n−1\frac{1}{n} = n^{-1}n1=n−1Solution: (16)−3+(12)−3+(13)−3(\frac{1}{6})^{-3} + (\frac{1}{2})^{-3} + (\frac{1}{3})^{-3}(61)−3+(21)−3+(31)−3 (6−1)−3+(2−1)−3+(3−1)−3(6 ^{-1})^{-3} + (2^{-1})^{-3} + (3^{-1})^{-3}(6−1)−3+(2−1)−3+(3−1)−3= 63+23+336^3 + 2^3 +3^363+23+33 = 216 + 8 + 27 = 251