hamburger menu
All Coursesall course arrow
adda247
reward-icon
adda247
    arrow
    arrow
    arrow
    Find dydx\frac{dy}{dx}dxdy​​ given the following implicit equation: x2+y2=a2x^2+y^2=a^2x2+y2=a2
    Question

    Find dydx\frac{dy}{dx}​ given the following implicit equation: x2+y2=a2x^2+y^2=a^2

    A.

    -y/x

    B.

    -x/y

    C.

    y/x

    D.

    x/y

    Correct option is B

    Differentiating implicitly:ddx(x2)+ddx(y2)=ddx(a2)2x+2ydydx=0Solve for dydx:2ydydx=2xdydx=2x2y=xy\text{Differentiating implicitly:} \quad \frac{d}{dx} \left( x^2 \right) + \frac{d}{dx} \left( y^2 \right) = \frac{d}{dx} \left( a^2 \right)\\\quad 2x + 2y \frac{dy}{dx} = 0\\\text{Solve for } \frac{dy}{dx}:\\\quad 2y \frac{dy}{dx} = -2x\\\quad \frac{dy}{dx} = \frac{-2x}{2y} = \frac{-x}{y}​​

    test-prime-package

    Access ‘AAI JE ATC’ Mock Tests with

    • 60000+ Mocks and Previous Year Papers
    • Unlimited Re-Attempts
    • Personalised Report Card
    • 500% Refund on Final Selection
    • Largest Community
    students-icon
    175k+ students have already unlocked exclusive benefits with Test Prime!
    test-prime-package

    Access ‘AAI JE ATC’ Mock Tests with

    • 60000+ Mocks and Previous Year Papers
    • Unlimited Re-Attempts
    • Personalised Report Card
    • 500% Refund on Final Selection
    • Largest Community
    students-icon
    175k+ students have already unlocked exclusive benefits with Test Prime!