arrow
arrow
arrow
Find dydx\frac{dy}{dx}dxdy​​ given the following implicit equation: x2+y2=a2x^2+y^2=a^2x2+y2=a2
Question

Find dydx\frac{dy}{dx}​ given the following implicit equation: x2+y2=a2x^2+y^2=a^2

A.

-y/x

B.

-x/y

C.

y/x

D.

x/y

Correct option is B

Differentiating implicitly:ddx(x2)+ddx(y2)=ddx(a2)2x+2ydydx=0Solve for dydx:2ydydx=2xdydx=2x2y=xy\text{Differentiating implicitly:} \quad \frac{d}{dx} \left( x^2 \right) + \frac{d}{dx} \left( y^2 \right) = \frac{d}{dx} \left( a^2 \right)\\\quad 2x + 2y \frac{dy}{dx} = 0\\\text{Solve for } \frac{dy}{dx}:\\\quad 2y \frac{dy}{dx} = -2x\\\quad \frac{dy}{dx} = \frac{-2x}{2y} = \frac{-x}{y}​​

test-prime-package

Access ‘AAI JE ATC’ Mock Tests with

  • 60000+ Mocks and Previous Year Papers
  • Unlimited Re-Attempts
  • Personalised Report Card
  • 500% Refund on Final Selection
  • Largest Community
students-icon
224k+ students have already unlocked exclusive benefits with Test Prime!
test-prime-package

Access ‘AAI JE ATC’ Mock Tests with

  • 60000+ Mocks and Previous Year Papers
  • Unlimited Re-Attempts
  • Personalised Report Card
  • 500% Refund on Final Selection
  • Largest Community
students-icon
224k+ students have already unlocked exclusive benefits with Test Prime!