Correct option is BDifferentiating implicitly:ddx(x2)+ddx(y2)=ddx(a2)2x+2ydydx=0Solve for dydx:2ydydx=−2xdydx=−2x2y=−xy\text{Differentiating implicitly:} \quad \frac{d}{dx} \left( x^2 \right) + \frac{d}{dx} \left( y^2 \right) = \frac{d}{dx} \left( a^2 \right)\\\quad 2x + 2y \frac{dy}{dx} = 0\\\text{Solve for } \frac{dy}{dx}:\\\quad 2y \frac{dy}{dx} = -2x\\\quad \frac{dy}{dx} = \frac{-2x}{2y} = \frac{-x}{y}Differentiating implicitly:dxd(x2)+dxd(y2)=dxd(a2)2x+2ydxdy=0Solve for dxdy:2ydxdy=−2xdxdy=2y−2x=y−x