arrow
arrow
arrow
Differentiate f(x)f(x)f(x)​ = cos(tan 3x3x3x​) + sin(tan 3x3x3x).
Question

Differentiate f(x)f(x)​ = cos(tan 3x3x​) + sin(tan 3x3x).

A.

cos(tan 3x3x​) + sin(tan 3x3x​)

B.

sec2\text{sec}^2​ 3x3x​(cos(tan 3x3x​) + sin(tan 3x3x​))

C.

cos(tan 3x3x​) - sin(tan 3x3x​)

D.

3sec23\text{sec}^2​ 3x3x​(cos(tan 3x3x​) - sin(tan 3x3x​))

Correct option is D

1. Differentiate cos(tan3x):Let u=tan3x.Then, cos(u) differentiates to sin(u)dudx.Compute dudx:ddx(tan3x)=sec23x3=3sec23xSo, the derivative is:ddx[cos(tan3x)]=sin(tan3x)3sec23x=3sin(tan3x)sec23x2. Differentiate sin(tan3x):Similarly, let u=tan3x.Then, sin(u) differentiates to cos(u)dudx.We already have dudx=3sec23x.So, the derivative is:ddx[sin(tan3x)]=cos(tan3x)3sec23x=3cos(tan3x)sec23xCombine the DerivativesAdd the derivatives of the two terms:f(x)=3sin(tan3x)sec23x+3cos(tan3x)sec23xFactor out the common term 3sec23x:f(x)=3sec23x(cos(tan3x)sin(tan3x))\begin{aligned}&\textbf{1. Differentiate } \cos(\tan 3x): \\&\text{Let } u = \tan 3x. \\&\text{Then, } \cos(u) \text{ differentiates to } -\sin(u) \cdot \frac{du}{dx}. \\&\text{Compute } \frac{du}{dx}: \\&\frac{d}{dx}(\tan 3x) = \sec^2 3x \cdot 3 = 3 \sec^2 3x \\&\text{So, the derivative is:} \\&\frac{d}{dx}[\cos(\tan 3x)] = -\sin(\tan 3x) \cdot 3 \sec^2 3x = -3 \sin(\tan 3x) \sec^2 3x \\\\&\textbf{2. Differentiate } \sin(\tan 3x): \\&\text{Similarly, let } u = \tan 3x. \\&\text{Then, } \sin(u) \text{ differentiates to } \cos(u) \cdot \frac{du}{dx}. \\&\text{We already have } \frac{du}{dx} = 3 \sec^2 3x. \\&\text{So, the derivative is:} \\&\frac{d}{dx}[\sin(\tan 3x)] = \cos(\tan 3x) \cdot 3 \sec^2 3x = 3 \cos(\tan 3x) \sec^2 3x \\\\&\textbf{Combine the Derivatives} \\&\text{Add the derivatives of the two terms:} \\&f'(x) = -3 \sin(\tan 3x) \sec^2 3x + 3 \cos(\tan 3x) \sec^2 3x \\&\text{Factor out the common term } 3 \sec^2 3x: \\&f'(x) = 3 \sec^2 3x \left( \cos(\tan 3x) - \sin(\tan 3x) \right)\end{aligned}​​

test-prime-package

Access ‘AAI JE ATC’ Mock Tests with

  • 60000+ Mocks and Previous Year Papers
  • Unlimited Re-Attempts
  • Personalised Report Card
  • 500% Refund on Final Selection
  • Largest Community
students-icon
224k+ students have already unlocked exclusive benefits with Test Prime!
test-prime-package

Access ‘AAI JE ATC’ Mock Tests with

  • 60000+ Mocks and Previous Year Papers
  • Unlimited Re-Attempts
  • Personalised Report Card
  • 500% Refund on Final Selection
  • Largest Community
students-icon
224k+ students have already unlocked exclusive benefits with Test Prime!