Correct option is D
1. Differentiate cos(tan3x):Let u=tan3x.Then, cos(u) differentiates to −sin(u)⋅dxdu.Compute dxdu:dxd(tan3x)=sec23x⋅3=3sec23xSo, the derivative is:dxd[cos(tan3x)]=−sin(tan3x)⋅3sec23x=−3sin(tan3x)sec23x2. Differentiate sin(tan3x):Similarly, let u=tan3x.Then, sin(u) differentiates to cos(u)⋅dxdu.We already have dxdu=3sec23x.So, the derivative is:dxd[sin(tan3x)]=cos(tan3x)⋅3sec23x=3cos(tan3x)sec23xCombine the DerivativesAdd the derivatives of the two terms:f′(x)=−3sin(tan3x)sec23x+3cos(tan3x)sec23xFactor out the common term 3sec23x:f′(x)=3sec23x(cos(tan3x)−sin(tan3x))