Tamil govt jobs   »   Latest Post   »   TNPSC Combined Statistical Subordinate Service Syllabus,...

# TNPSC Combined Statistical Subordinate Service Syllabus, Check Exam Pattern | TNPSC ஒருங்கிணைந்த புள்ளியியல் துணை சேவை பாடத்திட்டம், தேர்வு முறை சரிபார்க்கவும்

TNPSC Combined Statistical Subordinate Service Syllabus: Tamilnadu Public Service Commission released the TNPSC Combined Statistical Subordinate Service Notification on its Official Website www.tnpsc.gov.in. Interested and Eligible candidates can submit their application from 15.09.2022 to 14.10.2022. In this article candidates can get the details of TNPSC Combined Statistical Subordinate Service Syllabus and Exam Pattern.

 TNPSC Combined Statistical Subordinate Service Notification Name of the organization Tamilnadu Public Service Commission Post Name Assistant Statistical Investigator, Computor, Statistical Compiler No of vacancies 217 Job Location Tamilnadu Notification Date 15.09.2022 Last Date 14.10.2022 Exam Date 29.01.2023 Official Website www.tnpsc.gov.in

Fill the Form and Get All The Latest Job Alerts

## TNPSC Combined Statistical Subordinate Service Syllabus

MATHEMATICS / MATHEMATICS WITH STATISTICS
(DEGREE STANDARD)

UNIT I
ALGEBRA AND TRIGONOMETRY:
Theory of Equations: Polynomial equations; Imaginary and irrational roots; Symmetric
functions of roots in terms of coefficient; Sum of rth powers of roots; Reciprocal equations;
Transformations of equations.
Descrates’ rule of signs: Approximate solutions of roots of polynomials by Newton – Raphson
Method – Horner’s method; Cardan’s method of solution of a cubic polynomial.
Summation of Series: Binomial, Exponential and Logarithmic series theorems; Summation of
finite series using method of differences – simple problems.
Expansions of sin x, cos x, tan x in terms of x; sin nx, cos nx, tan nx, sin nx, cos nx , tan nx,
hyperbolic and inverse hyperbolic functions – simple problems.
Symmetric; Skew Symmetric; Hermitian; Skew Hermitian; Orthogonal and Unitary Matrices;
Rank of a matrix; Consistency and solutions of Linear Equations; Cayley Hamilton Theorem;
Eigen values; Eigen Vectors; Similar matrices; Diagonalization of a matrix.
Equivalence relations; Groups; subgroups – cyclic groups and properties of cyclic groups –
simple problems; Lagrange’s theorem; Prime number; Composite number;. decomposition of a
composite number as a product of primes uniquely (without proof); divisors of a positive
integer n; congurence modulo n; Euler function; highest power of a prime number p contained
in n!; Fermat’s and Wilson’s theroems – simple problems.
Sums of sines and cosines of n angles which are in A.P.; Summation of trigonometric series
using telescopic method, C + i S method.

UNIT II
CALCULUS, COORDINATE GEOMETRY OF 2 DIMENSIONS AND DIFFERENTIAL
GEOMETRY
nth derivative; Leibnitz’s theorem and its applications; Partial differentiation. Total differentials;
Jacobians; Maxima and Minima of functions of 2 and 3 independent variables – necessary and
sufficient conditions; Lagrange’s method – simple problems on these concepts.
Methods of integration; Properties of definite integrals; Reduction formulae – Simple problems.
Conics – Parabola, ellipse, hyperbola and rectangular hyperbola – pole, polar, co-normal
points, con-cyclic points, conjugate diameters, asymptotes and conjugate hyperbola.
Curvature; radius of curvature in Cartesian coordinates; polar coordinates; equation of a
straight line, circle and conic; radius of curvature in polar coordinates; p-r equations; evolutes;
envelopes

Methods of finding asymptotes of rational algebraic curves with special cases. Beta and
Gamma functions, properties and simple problems. Double Integrals; change of order of
integration; triple integrals; applications to area, surface are volume.

UNIT III
DIFFERENTIAL EQUATIONS AND LAPLACE TRANSFORMS
First order but of higher degree equations – solvable for p, solvable for x, solvable for y,
clairaut’s form – simple problems.
Second order differential equations with constant coefficients with particular integrals for eax,xm, eax sin mx, eax cos mxSecond order differential equations with variable coefficients 2 d;Method of variation of parameters; Total differential equations,simple problems.
Partial Differential equations : Formation of P.D.E by eliminating arbitrary constants and
arbitrary functions; complete integral; Singular integral ; general integral; Charpit’s method and
standard types f(p,q)=0, f(x,p,q)=0, f(y,p,q)=0, f(z,p,q)=0, f(x,p)= f(y,q); Clairaut’s form and
Lagrange’s equations Pp+Qq=R – simple problems.

Laplace transform; inverse Laplace transform(usual types); applications of Laplace transform
to solution of first and second order linear differential equations (constant coefficients) and
simultaneous linear differential equations – simple problems.

UNIT IV
VECTOR CALCULUS, FOURIER SERIES AND FOURIER TRANSFORMS
Vector Differentiation : Gradient, divergence, curl, directional derivative, unit normal to a
surface.
Vector integration: line, surface and volume integrals; theorems of Gauss, Stokes and Green –
simple problems.
Fourier Series: Expansions of periodic function of period 2π ; expansion of even and odd
functions; half range series.
Fourier Transform: Infinite Fourier transform (Complex form, no derivation); sine and cosine
transforms; simple properties of Fourier Transforms; Convolution theorem; Parseval’s identity.

UNIT V
ALGEBRAIC STRUCTURES
Groups: Subgroups, cyclic groups and properties of cyclic groups – simple problems;
Lagrange’s Theorem; Normal subgroups; Homomorphism; Automorphism ; Cayley’s Theorem,
Permutation groups.
Rings: Definition and examples, Integral domain, homomorphism of rings, Ideals and quotient
Rings, Prime ideal and maximum ideal; the field and quotients of an integral domain,
Euclidean Rings.

Vector Spaces: Definition and examples, linear dependence and independence, dual spaces,
inner product spaces.
Linear Transformations: Algebra of linear transformations, characteristic roots, matrices,
canonical forms, triangular forms.

UNIT VI
REAL ANALYSIS
Sets and Functions: Sets and elements; Operations on sets; functions; real valued functions;
equivalence; countability; real numbers; least upper bounds.
Sequences of Real Numbers: Definition of a sequence and subsequence; limit of a sequence;
convergent sequences; divergent sequences; bounded sequences; monotone sequences;
operations on convergent sequences; operations on divergent sequences; limit superior and
limit inferior; Cauchy sequences.
Series of Real Numbers: Convergence and divergence; series with non-negative numbers;
alternating series; conditional convergence and absolute convergence; tests for absolute
convergence; series whose terms form a non-increasing sequence; the class I
2
.
Limits and metric spaces: Limit of a function on a real line; metric spaces; limits in metric
spaces.
Continuous functions on Metric Spaces: Functions continuous at a point on the real line,
reformulation, functions continuous on a metric space, open sets, closed sets, discontinuous
functions on the real line.
Connectedness Completeness and compactness: More about open sets, connected sets,
bounded sets and totally bounded sets, complete metric spaces, compact metric spaces,
continuous functions on a compact metric space, continuity of inverse functions, uniform
continuity.

Calculus: Sets of measure zero, definition of the Riemann integral, existence of the Riemann
integral properties of Riemann integral, derivatives, Rolle’s theorem, Law of mean,
Fundamental theorems of calculus, Taylor’s theorem.
Sequences and Series of Functions. Pointwise convergence of sequences of functions,
uniform convergence of sequences of functions.

UNIT VII
COMPLEX ANALYSIS
Complex numbers: Point at infinity , Stereographic projection
Analytic functions: Functions of a complex variable, mappings, limits, theorems of limits,
continuity, derivatives, differentiation formula, Cauchy-Riemann equations, sufficient
conditions Cauchy-Riemann equations in polar form, analytic functions, harmonic functions.
Mappings by elementary functions: linear functions, the function 1/z, linear fractional
transformations , the functions w=zn
, w=ez
, special linear fractional transformations.
Integrals: definite integrals, contours , line integrals, Cauchy-Goursat theorem, Cauchy integral
formula, derivatives of analytic functions, maximum moduli of functions.

Series: convergence of sequences and series, Taylor’s series, Laurent’s series, zero’s of
analytic functions.
Residues and poles: residues, the residue theorem, the principal part of functions, poles,
evaluation of improper real integrals, improper integrals, integrals involving trigonometric
functions, definite integrals of trigonometric functions

UNIT VIII
DYNAMICS AND STATICS
DYNAMICS: kinematics of a particle, velocity, acceleration, relative velocity, angular velocity,
Newton’s laws of motion, equation of motion, rectilinear motion under constant acceleration,
simple harmonic motion.
Projectiles : Time of flight, horizontal range, range in an inclined plane. Impulse and impulsive
motion, collision of two smooth spheres, direct and oblique impact-simple problems.
Central forces : Central orbit as plane curve, p-r equation of a central orbit, finding law of
force and speed for a given central orbit, finding the central orbit for a given law of force.
Moment of inertia : Moment of inertia of simple bodies, theorems of parallel and perpendicular
axes, moment of inertia of triangular lamina, circular lamina, circular ring, right circular cone,
sphere (hollow and solid).
STATICS: Types of forces, Magnitude and direction of the resultant of the forces acting on a
particle, Lami’s Theorem, equilibrium of a particle under several coplanar forces, parallel
forces, moments, couples-simple problems.
Friction: Laws of friction, angle of friction, equilibrium of a body on a rough inclined plane
acted on by several forces, centre of gravity of simple uniform bodies, triangular lamina, rods
forming a triangle, trapezium, centre of gravity of a circular arc, elliptic quadrant, solid and
hollow hemisphere, solid and hollow cone, catenary-simple problems.

UNIT IX
OPERATIONS RESEARCH
Linear programming – formulation – graphical solution – simplex method
Big-M method – Two-phase method-duality- primal-dual relation – dual simplex method –
revised simplex method – Sensitivity analysis. Transportation problem – assignment problem.
Sequencing problem – n jobs through 2 machines – n jobs through 3 machines – two jobs
through m machines – n jobs through m machines
PERT and CPM : project network diagram – Critical path (crashing excluded) – PERT
computations.
Queuing theory – Basic concepts – Steady state analysis of M/M/1 and M/M/systems with
infinite and finite capacities.
Inventory models : Basic concepts – EOQ models : (a) Uniform demand rate infinite production
rate with no shortages (b) Uniform demand rate Finite production rate with no shortages –Classical newspaper boy problem with discrete demand – purchase inventory model with one
price break.
Game theory : Two-person Zero-sum game with saddle point – without saddle point –
dominance – solving 2 x n or m x 2 game by graphical method.
Integer programming : Branch and bound method.

UNIT IX
MATHEMATICAL STATISTICS
Statistics – Definition – functions – applications – complete enumeration – sampling methods –
measures of central tendency – measures of dispersion – skewness- kurtosis.
Sample space – Events, Definition of probability (Classical, Statistical & Axiomatic ) – Addition
and multiplication laws of probability – Independence – Conditional probability
– Bayes theorem – simple problems.
Random Variables (Discrete and continuous), Distribution function – Expected values &
moments – Moment generating function – probability generating function – Examples.
Characteristic function – Uniqueness and inversion theorems – Cumulants, Chebychev’s
inequality – Simple problems.
Concepts of bivariate distribution – Correlation : Rank correlation coefficient – Concepts of
partial and multiple correlation coefficients – Regression : Method of Least squares for fitting
Linear, Quadratic and exponential curves – simple problems.
Standard distributions – Binomial, Hyper geometric, Poission, Normal and Uniform
distributions – Geometric, Exponential, Gamma and Beta distributions, Inter-relationship
among distributions.
Sampling Theory – sampling distributions – concept of standard error-sampling distribution
based on Normal distribution : t, chi-square and F distribution.

Point estimation-concepts of unbiasedness, consistency, efficiency and sufficiency- Cramer
Rao inequality-methods of estimation : Maximum likelihood, moments and minimum chisquare and their properties.
Test of Significance-standard error-large sample tests. Exact tests based on Normal, t, chisquare and F distributions with respect to population mean/means, proportion/proportions
variances and correlation co-efficient. Theory of attributes – tests of independence of
attributes based on contingency tables – goodness of fit tests based on Chi-square.
Analysis of variance : One way, two-way classification – Concepts and problems, interval
estimation – confidence intervals for population mean/means, proportion/proportions and
variances based on Normal, t, chi-square and F.
Tests of hypothesis : Type I and Type II errors – power of test-Neyman Pearson Lemma –
Likelihood ratio tests – concepts of most powerful test –simple problems

STATISTICS (UG STANDARD)

UNIT I : Uses, Scope and limitation of Statistics, Collection, Classification and Tabulation of data,
Diagramatic and Graphical representation, Measures of location, dispersion, Skewness and
Kurtosis – Correlation and regression – Curve Fitting – Linear and Quadratic equation by the
method of least squares.
UNIT II : Probability – Addition, Multiplication and Baye’s Theorems and their application.
Tchebychev’s inequality. Random variables – Univariate and Bivariate – Probability distributions –
Marginal and conditional distributions – Expectations – Moments and cumulants generating
functions.
UNIT III : Probability distributions – Binomial, Poisson, Geometric and Hypergeometric.
Continuous distributions – Uniform, exponential and normal. Sampling distributions and standard
error, student’s ‘t’, Chi-square and F statistic – distributions and their applications.
UNIT IV : Estimation – Point estimation – properties of estimates Neyman – Fisher Factorization
theorem(without proof) Cramer – Rao inequality, Rao – Blackwell theorem – MLE and method of
Moments estimation – Interval estimation – for population mean and variance based on small and
large samples.

UNIT V : Tests of Hypothesis – Null and Alternative – Types of errors – Power of test, Neyman –
Pearson lemma, UMP and Likelihood ratio tests, Test procedures for large and small samples –
Independence of attributes, Chi-square test – Goodness of fit
UNIT VI : Simple random sample – stratified, systematic, Cluster (Single stage) Estimation of
mean and variance in SKS – Sample Survey – Organisation – CSO and NSSO – Sampling and
Non-Sampling errors.
Analysis of Variance – Principles of design CRD, RBD and LSD – Factorial experiments 22
, 23 and
3
2
(Without confounding) Missing plot techniques.
UNIT VII : Concept of SQC – Control Charts – X, R, p and charts Acceptance sampling plan –
single and double – OC curves Attributes and Variables plan.
OR Models – Linear Programming problems – Simplex method Dual – Primal, Assignment
problems, Net work – CPM and PERT
UNIT VIII : Time series – Different components – Trend and Seasonal Variations – Determination
and elimination
UNIT IX : Index Numbers – Construction and uses – Different kinds of simple and weighted index
numbers – Reversal tests – construction and use of cost of living index numbers – Birth and death
rates – Crude and standard death rates, Fertility rates – Life table construction and uses.
UNIT X : Statistical Computing using Excel – Understanding on the usage of Statistical Packages
including SPSS, MINITAB and SAS.

Paper-II
SYLLABUS FOR EXAMINATION
PART – A
TAMIL ELIGIBILITY TEST (SSLC STANDARD)
கட்டாயத் தமிழ்மமாழி தகுதித் ததர்விற்கான பாடத்திட்டம்
(மகாள்குறி வினாவிற்கான தலைப்புகள் )
பத்தாம் வகுப்பு தரம்

1. பிரித்தெழுதுதல்/சேர்த்தெழுதுதல்.
2. எதிர்ச்சொல்லை எடுத்தெழுதுதல்.
3. பொருந்தாச்சொல்லைக் கண்டறிதல்
4. பிழை திருத்தம் (i) சந்திப்பிழையை நீக்குதல் ( ii) மரபுப் பிழைகள், வழுவுச் சொற்களை நீக்குதல் பிறமொழிச்சொற்களை நீக்குதல்
5. ஆங்கிலச்சொல்லுக்கு நேரான தமிழ்ச்சொல்லை அறிதல்.
6. ஒலி மற்றும் பொருள் வேறுபாடறிந்து சரியான பொருளையறிதல்.
7. ஒரு பொருள் தரும் பல சொற்கள்.
8. வேர்ச்சொல்லைத் தேர்வு செய்தல்.
9. வேர்ச்சொல்லைக் கொடுத்து வினைமுற்று, வினையெச்சம், வினையாலணையும் பெயர், தொழிற்பெயரை உருவாக்கல்
10. அகரவரிசைப்படி சொற்களை சீர் செய்தல்.
11. சொற்களை ஒழுங்குப்படுத்தி சொற்றொடராக்குதல்.
12. இருவினைகளின்பொருள் வேறுபாடு அறிதல் (எ.கா.) குவிந்து குவித்து
13. விடைக்கேற்ற வினாவைத்தேர்ந்தெடுத்தல்.
14. எவ்வகை வாக்கியம் என க்கண்டெழுதுதல் – தன்வினை, பிறவினை, செய்வினை, செயப்பாட்டு வினைவாக்கியங்களைக் கண்டெழுதுதல்.
15. உவமையால் விளக்கப்பெறும் பொருத்தமான பொருளைத்தேர்ந்தெழுதுதல்
16. அலுவல்சார்ந்தசொற்கள் (கலைச்சொல்)
17. விடைவகைகள்
18. பிறமொழிச் சொற்களுக்கு இணையான தமிழ்ச் சொற்களைக் கண்டறிதல் (எ.கா.) கோல்டுபிஸ்கட்-தங்கக்கட்டி
19. ஊர்ப்பெயர்களின்மரூஉவை எழுதுக (எ.கா.) தஞ்சாவூர்-தஞ்சை
20. நிறுத்தற்குறிகளை அறிதல்
21. பேச்சுவழக்கு, எழுத்து வழக்கு வாரான்-வருகிறான்).
22. சொற்களை இணைத்து புதிய சொல் உருவாக்கல்
23. பொருத்தமானகாலம் அமைத்தல் (இறந்தகாலம், நிகழ்காலம், எதிர்காலம்).
24. சரியான வினாச்சொல்லைத் தேர்ந்தெடு
25. சரியான இணைப்புச் சொல் (எனவே, ஏனெனில், ஆகையால், அதனால், அதுபோல).
26. அடைப்புக்குள் உள்ள சொல்லைத் தகுந்த இடத்தில் சேர்க்க.
27. இருபொருள்தருக.
28. குறில் நெடில் மாற்றம், பொருள்வேறுபாடு
29. கூற்று காரணம் சரியா? தவறா?
30. கலைச்சொற்களை அறிதல் எ.கா.- Artificial Intelligence – செயற்கை நுண்ண றிவு Super Computer -மீத்திறன் கணினி
31. பொருத்தமானபொருளைத் தெரிவு செய்தல்
32. சொற்களின் கூட்டுப்பெயர்கள் (எ.கா.) புல் புற்கள்
33. சரியான தொடரைத்தேர்ந்தெடுத்தல்
34. பிழைதிருத்துதல் ஒரு.ஓர்)
35. சொல்-பொருள் பொருத்துக
36. ஒருமை-பன்மை பிழை
37. பத்தியிலிருந்து வினாவிற்கான சரியான விடையைத் தேர்ந்தெடு

PART – B
GENERAL STUDIES (DEGREE STANDARD)
CODE NO.003
UNIT-I: GENERAL SCIENCE
(i) Scientific Knowledge and Scientific Temper – Power of Reasoning – Rote Learning
vs Conceptual Learning – Science as a tool to understand the past, present and
future.

(ii)Nature of Universe – General Scientific Laws – Mechanics – Properties of Matter,
Force, Motion and Energy – Everyday application of the Basic Principles of
Mechanics, Electricity and Magnetism, Light, Sound, Heat, Nuclear Physics, Laser,
Electronics and Communications.
(iii) Elements and Compounds, Acids, Bases, Salts, Petroleum Products, Fertilisers,
Pesticides.
(iv) Main concepts of Life Science, Classification of Living Organisms, Evolution,
Genetics, Physiology, Nutrition, Health and Hygiene, Human Diseases.
(v) Environment and Ecology.

UNIT-II: CURRENT EVENTS
(i) History – Latest diary of events – National symbols – Profile of States – Eminent
personalities and places in news – Sports-Books and authors.
(ii) Polity – Political parties and political system in India-Public awareness and
General administration- Welfare oriented Government schemes and their utility,
Problems in Public Delivery Systems.
(iii) Geography-Geographical landmarks.
(iv) Economics-Current socio-economic issues.
(v) Science-Latest inventions in Science and Technology.
(vi) Prominent Personalities in various spheres – Arts, Science, Literature and
Philosophy.

UNIT-III: GEOGRAPHY OF INDIA
(i) Location – Physical features – Monsoon, Rainfall, Weather and Climate – Water
Resources – Rivers in India – Soil, Minerals and Natural Resources – Forest and
Wildlife – Agricultural pattern.
(ii) Transport -Communication.
(iii) Social Geography – Population density and distribution- Racial, Linguistic Groups
and Major Tribes.
(iv) Natural calamity – Disaster Management – Environmental pollution: Reasons
and preventive measures – Climate change – Green energy.

UNIT–IV: HISTORY AND CULTURE OF INDIA
(i) Indus Valley Civilization – Guptas, Delhi Sultans, Mughals and Marathas – Age of
Vijayanagaram and Bahmani Kingdoms – South Indian History.
(ii) Change and Continuity in the Socio – Cultural History of India.
(iii) Characteristics of Indian Culture, Unity in Diversity –Race, Language, Custom.
(iv) India as a Secular State, Social Harmony.

UNIT-V: INDIAN POLITY
(i) Constitution of India – Preamble to the Constitution- Salient features of the
Constitution- Union, State and Union Territory.
(ii) Citizenship, Fundamental Rights, Fundamental Duties, Directive Principles of
State Policy.
(iii) Union Executive, Union Legislature – State Executive, State Legislature – Local
Governments, Panchayat Raj.
(iv) Spirit of Federalism: Centre-State Relationships.
(v) Election – Judiciary in India – Rule of Law.
(vi) Corruption in Public Life – Anti-corruption measures – Lokpal and Lok Ayukta –
Right to Information- Empowerment of Women-Consumer Protection Forums,
Human Rights Charter.

UNIT-VI: INDIAN ECONOMY
(i) Nature of Indian Economy – Five year plan models – an assessment –
Planning Commission and Niti Ayog.
(ii) Sources of revenue – Reserve Bank of India – Fiscal Policy and Monetary
Policy – Finance Commission – Resource sharing between Union and State
Governments – Goods and Services Tax.
(iii) Structure of Indian Economy and Employment Generation, Land Reforms and
Agriculture – Application of Science and Technology in Agriculture – Industrial
growth – Rural Welfare Oriented Programmes – Social Problems – Population,
Education, Health, Employment, Poverty.

UNIT-VII: INDIAN NATIONAL MOVEMENT
(i) National Renaissance –Early uprising against British rule – Indian National
Congress – Emergence of leaders –B.R.Ambedkar, Bhagat Singh, Bharathiar,
V.O. Chidambaranar Jawaharlal Nehru, Kamarajar, Mahatma Gandhi, Maulana
Abul Kalam Azad, Thanthai Periyar, Rajaji, Subash Chandra Bose,
Rabindranath Tagore and others.
(ii) Different modes of Agitation: Growth of Satyagraha and Militant Movements.
(iii) Communalism and Partition.

UNIT-VIII: History, Culture, Heritage and Socio-Political Movements
(i) History of Tamil Society, related Archaeological discoveries, Tamil Literature
from Sangam Age till contemporary times.
(ii) Thirukkural : (a) Significance as a Secular Literature
(b) Relevance to Everyday Life
(c) Impact of Thirukkural on Humanity
(d) Thirukkural and Universal Values – Equality,
Humanism, etc
(e) Relevance to Socio-Politico-Economic affairs
(f) Philosophical content in Thirukkural
(iii) Role of Tamil Nadu in freedom struggle – Early agitations against British Rule –
Role of women in freedom struggle.
(iv) Evolution of 19th and 20th Century Socio – Political Movements in Tamil Nadu –
Justice Party, Growth of Rationalism – Self Respect Movement, Dravidian
Movement and Principles underlying both these Movements, Contributions of
Thanthai Periyar and Perarignar Anna.

(i) Human Development Indicators in Tamil Nadu and a comparative assessment
across the Country – Impact of Social Reform Movements in the Socio –
(ii) Political parties and Welfare schemes for various sections of people –Rationale
behind Reservation Policy and access to Social Resources – Economic trends in
Tamil Nadu – Role and impact of social welfare schemes in the Socio-Economic
(iii) Social Justice and Social Harmony as the Cornerstones of Socio-Economic
Development.
(iv) Education and Health Systems in Tamil Nadu.
(v) Geography of Tamil Nadu and its impact on Economic growth.
(vi) Achievements of Tamil Nadu in various fields.

UNIT-X: APTITUDE AND MENTAL ABILITY
(i) Simplification – Percentage – Highest Common Factor (HCF) – Lowest Common
Multiple (LCM).
(ii) Ratio and Proportion.
(iii) Simple interest – Compound interest – Area – Volume – Time and Work.
(iv) Logical Reasoning – Puzzles-Dice – Visual Reasoning – Alpha numeric Reasoning
– Number Series.

TNPSC Reporter Recruitment 2022, Apply Online for English and Tamil Reporter Notification | TNPSC நிருபர் ஆட்சேர்ப்பு 2022

## TNPSC Combined Statistical Subordinate Service Syllabus PDF

TNPSC Combined Statistical Subordinate Service Syllabus: TNPSC ஒருங்கிணைந்த புள்ளியியல் சார்நிலை பணிகளில் அடங்கிய உதவி புள்ளியியல் ஆய்வாளர், கணக்கிடுபவர், புள்ளியியல் தொகுப்பாளர் ஆகிய பதவிகளுக்கான தேர்வு பாடத்திட்டத்தை பதிவிறக்கவும்.

## TNPSC Combined Statistical Subordinate Service Exam Pattern

 Subject EXAMINATION in COMPUTER BASED TEST Method Duration Maximum Marks Minimum qualifying marks for selection SCs, SC(A)s, STs, MBCs/ DCs, BC(OBCM)s & BCMs Others Paper – I (objective type) (Subject Paper) 200 Questions (Degree Standard) Any one of the following subjects:- (i) Statistics (Code No. 274) (ii) Mathematics (Code No.276) 3 Hours 300 135 180 Paper- II (Objective Type) (200 Questions) Part-A Tamil Eligibility Test (SSLC Std) (100 questions/ 150 marks) 3 Hours Note: Minimum qualifying marks –60 marks (40% of 150) Marks secured in Part-A of Paper-II will not be taken into account for ranking. Part-B General Studies (Code No.003) (100 questions/ 150 marks) General Studies (Degree Std) -75 questions and Aptitude & Mental Ability Test (SSLC Std.) -25 questions 150 Total 450

TNPSC Jailor Notification 2022, Apply Online for the Post of Jailor in Tamil Nadu Jail Service | TNPSC ஜெயிலர் அறிவிப்பு 2022

## TNPSC Combined Statistical Subordinate Service Important Days

 Date of Notification 15.09.2022 Last date for submission of online application 14.10.2022 Online Application Correction Window Period From 19.10.2022 12.01 A.M to 21.10.2022 11.59 P.M English Reporter & Tamil Reporter Exam Date 29.01.2023

இது போன்ற தேர்விற்கான தகவல் மற்றும் பாடக்குறிப்புகளை பெற ADDA247 தமிழ் செயலியை பதிவிறக்கம் செய்யுங்கள்

To Attempt the Quiz on APP with Timings & All India Rank,

Adda247 பயன்பாட்டில் இந்த வினாடி வினாவை முயற்சிக்க இங்கே கிளிக் செய்து அகில இந்திய தரவரிசையைப் பெறுங்கள்

### Use Code: JOB15(15% off on all)

TNPSC Group 1 Prelims & Mains OFFICERS BATCH – II Tamil Online Classes By Adda247

***************************************************************************

*இப்போது உங்கள் வீட்டில் தமிழில் நேரடி வகுப்புகள் கிடைக்கின்றன*

Check Live Classes in Tamil

*பயிற்சி மட்டுமே தேர்வுர உங்களுக்கு உதவ முடியும் | Adda247 தமிழ் மூலம் உங்கள் பயிற்சியை இப்போது தொடங்கவும்*

Practice Now