arrow
arrow
arrow
What is the maximum area of the rectangle with perimeter 620 mm?
Question

What is the maximum area of the rectangle with perimeter 620 mm?

A.

24,025 mm2mm^2​​

B.

22,725 mm2mm^2

C.

24,000 mm2mm^2

D.

24,075 mm2mm^2

Correct option is A

Let the length be l and the width be w.The perimeter is given by:2(l+w)=620=>l+w=310Step 2: Express area in one variableArea A of the rectangle is:A=lwFrom l+w=310, we can write w=310l. Substituting into the area formula:A=l(310l)=310ll2Step 3: Maximize the areaThe expression A=l2+310l is a quadratic in l, and it opens downward (since the coefficient of l2 is negative), so the maximum occurs at the vertex:l=b2a=3102(1)=155So, l=155, and w=310155=155Step 4: Calculate maximum areaA=155×155=24025 mm2\text{Let the length be} \ l \ \text{and the width be} \ w. \\\text{The perimeter is given by:} \\2(l + w) = 620 \quad \Rightarrow \quad l + w = 310 \\\text{Step 2: Express area in one variable} \\\text{Area} \ A \ \text{of the rectangle is:} \\A = l \cdot w \\\text{From} \ l + w = 310, \ \text{we can write} \ w = 310 - l. \ \text{Substituting into the area formula:} \\A = l(310 - l) = 310l - l^2 \\\text{Step 3: Maximize the area} \\\text{The expression} \ A = -l^2 + 310l \ \text{is a quadratic in} \ l, \ \text{and it opens downward (since the coefficient of} \ l^2 \ \text{is negative), so the maximum occurs at the vertex:} \\l = \frac{-b}{2a} = \frac{-310}{2(-1)} = 155 \\\text{So,} \ l = 155, \ \text{and} \ w = 310 - 155 = 155 \\\text{Step 4: Calculate maximum area} \\A = 155 \times 155 = 24025 \, \text{mm}^2​​

test-prime-package

Access ‘ISRO Mechanical Engineering’ Mock Tests with

  • 60000+ Mocks and Previous Year Papers
  • Unlimited Re-Attempts
  • Personalised Report Card
  • 500% Refund on Final Selection
  • Largest Community
students-icon
234k+ students have already unlocked exclusive benefits with Test Prime!
test-prime-package

Access ‘ISRO Mechanical Engineering’ Mock Tests with

  • 60000+ Mocks and Previous Year Papers
  • Unlimited Re-Attempts
  • Personalised Report Card
  • 500% Refund on Final Selection
  • Largest Community
students-icon
234k+ students have already unlocked exclusive benefits with Test Prime!
Our Plans
Monthsup-arrow