Correct option is D
Given:
The numbers are 2987, 3755, and 4331.
The remainder when dividing each number by the greatest divisor is 11.
Solution:
2987 - 11 = 2976, 3755 - 11 = 3744, 4331 - 11 = 4320
First, HCF(2976, 3744) using the Euclidean algorithm:
3744 - 2976 = 768
Now, HCF(2976, 768):
2976 ÷ 768 ≈ 3(quotient 3)
2976 − 3 × 768 = 2976 − 2304 = 672
Now, HCF(768,672):
768 - 672 = 96
Now, HCF(672, 96):
672 ÷ 96 = 7(quotient 7)
Thus, HCF(2976, 3744) = 96
Now HCF(96, 4320):
4320 ÷ 96 = 45(quotient 45)
Thus, GCD(96,4320) = 96
Therefore, the greatest divisor is 96