hamburger menu
All Coursesall course arrow
adda247
reward-icon
adda247
    arrow
    arrow
    arrow
    The number 2+72−7\frac{\sqrt{2} + \sqrt{7}}{\sqrt{2 - \sqrt{7}}}2−7​​2​+7​​​is:
    Question

    The number 2+727\frac{\sqrt{2} + \sqrt{7}}{\sqrt{2 - \sqrt{7}}}​is:

    A.

    an irrational number

    B.

    a rational number

    C.

    an integer

    D.

    a natural number

    Correct option is A

    Given:

    2+727\frac{\sqrt{2} + \sqrt{7}}{\sqrt{2 - \sqrt{7}}}

    Concept Used:

    An irrational number is a real number that cannot be expressed as a ratio of integers;

    for example, 2\sqrt 2 is an irrational number. 

    We cannot express any irrational number in the form of a ratio, such as pq\frac pq​, where p and q are integers, q≠0.

    Solution:

    2+727\frac{\sqrt{2} + \sqrt{7}}{\sqrt{2 - \sqrt{7}}}​​

    =2+727×2727\frac{\sqrt{2} + \sqrt{7}}{\sqrt{2 - \sqrt{7}}}\times\frac{\sqrt{2 - \sqrt{7}}}{\sqrt{2 - \sqrt{7}}}

    =2+7×2727×2+72+7\frac{\sqrt{2} + \sqrt{7}\times \sqrt{2 - \sqrt{7}}}{2 - \sqrt{7}} \times \frac{2 +\sqrt{7}}{2 + \sqrt{7}}

    =(2+7)×27×(2+7)47\frac{(\sqrt{2} + \sqrt{7})\times \sqrt{2 - \sqrt{7}}\times (2 +\sqrt{7})}{4 - 7}

    =(2+7)×27×(2+7)3\frac{(\sqrt{2} + \sqrt{7})\times \sqrt{2 - \sqrt{7}}\times (2 +\sqrt{7})}{-3}

    We can say that , above expression is an irrational number.

    Free Tests

    Free
    Must Attempt

    DSSSB PRT PYP (11 November 2018)

    languageIcon English
    • pdpQsnIcon200 Questions
    • pdpsheetsIcon200 Marks
    • timerIcon120 Mins
    languageIcon English
    Free
    Must Attempt

    Art of Teaching - 01

    languageIcon English
    • pdpQsnIcon20 Questions
    • pdpsheetsIcon20 Marks
    • timerIcon20 Mins
    languageIcon English
    Free
    Must Attempt

    Art of Teaching - 01

    languageIcon English
    • pdpQsnIcon20 Questions
    • pdpsheetsIcon20 Marks
    • timerIcon20 Mins
    languageIcon English
    test-prime-package

    Access ‘KVS TGT’ Mock Tests with

    • 60000+ Mocks and Previous Year Papers
    • Unlimited Re-Attempts
    • Personalised Report Card
    • 500% Refund on Final Selection
    • Largest Community
    students-icon
    228k+ students have already unlocked exclusive benefits with Test Prime!
    Our Plans
    Monthsup-arrow