Correct option is C
Given:x3−3x+k=0Let,f(x)=x3−3x+kNow,f′(x)=3x2−3=3(x2−1)=0=>x=±1Now evaluate the function at critical points:f(1)=13−3(1)+k=1−3+k=k−2f(−1)=(−1)3−3(−1)+k=−1+3+k=k+2The cubic has three distinct real roots if the local maximum and minimum lie on opposite sides of the x-axis:f(1)⋅f(−1)<0=>(k−2)(k+2)<0=>k2−4<0=>−2<k<2