Correct option is B
Given:
secA−tanAsecA+tanA=27951=79209
Formula Used:
(secA+tanA)(secA−tanA)=sec2A−tan2A=1
secA=cosA1
tanA=cosAsinA
Solution:
Let’s directly compute sinA using the identity:
secA−tanAsecA+tanA=1−sinA1+sinA=79209
(1+sinA)×79=(1−sinA)×209
79+79sinA=209−209sinA
79sinA+209sinA=209–79
288sinA=130
sinA=288130=14465
Thus, the correct option is (b) 14465