arrow
arrow
arrow
Given figure shows velocity-time graph of a ball of mass 250g rolling on a concretefloor. Compute the acceleration and the frictional force of the flo
Question

Given figure shows velocity-time graph of a ball of mass 250g rolling on a concretefloor. Compute the acceleration and the frictional force of the floor on the ball?

A.

5 m/s2,2 N-5 \mathrm{~m} / \mathrm{s}^2,-2 \mathrm{~N}​​

B.

10 m/s2,2.5 N-10 \mathrm{~m} / \mathrm{s}^2,-2.5 \mathrm{~N}​​

C.

5 m/s2,2.5 N-5 \mathrm{~m} / \mathrm{s}^2,-2.5 \mathrm{~N}​​

D.

10 m/s2,1 N-10 \mathrm{~m} / \mathrm{s}^2,-1 \mathrm{~N}​​

Correct option is B

Given: Mass of the ball, m=250 g=0.25 kg Initial velocity, v1=80 m/s Final velocity, v2=0 m/s Time taken, t=8 sConcept: The slope of a velocity-time graph gives acceleration. The force of friction is calculated using Newton’s second law:f=ma\textbf{Given:} \\\quad \bullet\ \text{Mass of the ball, } m = 250\, \text{g} = 0.25\, \text{kg} \\\quad \bullet\ \text{Initial velocity, } v_1 = 80\, \text{m/s} \\\quad \bullet\ \text{Final velocity, } v_2 = 0\, \text{m/s} \\\quad \bullet\ \text{Time taken, } t = 8\, \text{s} \\\\\textbf{Concept:} \\\quad \bullet\ \text{The slope of a velocity-time graph gives acceleration.} \\\quad \bullet\ \text{The force of friction is calculated using Newton's second law:} \\\quad \quad f = m \cdot a

a=v2v1t=0808=10 m/s2f=ma=0.25(10)=2.5 N\quad a = \frac{v_2 - v_1}{t} = \frac{0 - 80}{8} = -10\, \text{m/s}^2 \\\\\quad f = m \cdot a = 0.25 \cdot (-10) = -2.5\, \text{N}​​​

test-prime-package

Access ‘AAI JE ATC’ Mock Tests with

  • 60000+ Mocks and Previous Year Papers
  • Unlimited Re-Attempts
  • Personalised Report Card
  • 500% Refund on Final Selection
  • Largest Community
students-icon
240k+ students have already unlocked exclusive benefits with Test Prime!
test-prime-package

Access ‘AAI JE ATC’ Mock Tests with

  • 60000+ Mocks and Previous Year Papers
  • Unlimited Re-Attempts
  • Personalised Report Card
  • 500% Refund on Final Selection
  • Largest Community
students-icon
240k+ students have already unlocked exclusive benefits with Test Prime!
Our Plans
Monthsup-arrow